MAT?2540, Classwork2, Spring2026
5.3 Recursive Definitions and Structural Induction Part 1 (p. 365-370)

1. Review of 2.4: Define a Sequence by Recursive Relations:

Another popular method to define a sequence is to provide one or more {Y\ & ‘(’/[\a‘ terms together with a

re, CArg (@ rule for determining subsequent terms from those that precede them.

2. Let {a,,} be a sequence that satisfies the initial term a, = 2 and the recurrence relation
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3. Let {a, } be a sequence that satisfies the initial term a, = 3 and the recurrence relation
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4. (Fibonacci sequence) Let {f,,} be a sequence that satisfies the initial term f, = 0, f; = 1, and recurrence
relation
fo=fn1+ fapforn=234,--.
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5. Recursively Defined Function.

We use two steps to define a function with the set of nonnegative integers as its domain:
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7. Let {f,,} be the Fibonacci sequence: fo =0, f; =M, and f;, = fr_1 + fr—p forn = 2,3,4, .
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8. The Euclidean Algorithm: Let a = gb + r, where a, b, q, r are integers. Then ged(q ,b) =ged( b , ).

9. Find GCD by using the Euclidean Algorithm. Let d = ged(24, 36). We have d|24 and d|36.
36 = _I_ x 24 +]2_ then 35 = [2 mod 2_({: and d||2-. It implies d = ged(24,[2-).
24=2x12+ O, thené(/; = _() mod _[Zand d|_O. 1t implies d = ged(12, O). Thus, d = /=

10. (LAME ’s Theorem) Let a and b be positive integers with a > b. Then the number of divisions used by the

Euclidean algorithm to find gcd(a, b) is less than or equal to five times the number of decimal digits in b.
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