MAT2440 Project Spring2025

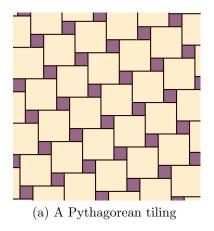
1. In section 5.1, we introduce the Mathematical induction which could be used to prove statements "P(n) is true" for all positive integers where P(n) is a propositional function.

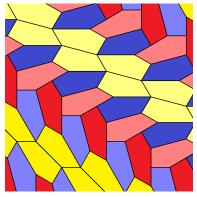
Use the induction to prove the following statement:

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$
 for all $n \in \mathbb{Z}^{+}$

2. Introduction of Tessellation.

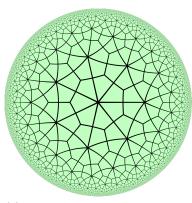
A tessellation or tiling is the covering of a surface using one or more geometric shapes with no overlaps and no gaps.





(b) A convex monohedral pentagonal tiling

Figure 1: Examples of tessellation



(c) A deltoidal triheptagonal tiling

From 1., we know

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
 for all $n \in \mathbb{Z}^+$.

If we rewrite this statement as the following:

$$1 \times 1^2 + 2 \times 2^2 + 3 \times 3^2 + \dots + n \times n^2 = 1 \times \left(\frac{n(n+1)}{2}\right)^2$$

and see the square numbers as the areas of squares $(1^2, 2^2, 3^2, \dots, n^2)$, and $\left(\frac{n(n+1)}{2}\right)^2$ are the area of squares with length $1, 2, 3, \dots, n$, and $\frac{n(n+1)}{2}$, respectively).

Theoretically speaking, for a given integer number n, there is a tessellation of a $\frac{n(n+1)}{2} \times \frac{n(n+1)}{2}$ square by using an 1×1 square, two of 2×2 squares, three of 3×3 squares, \cdots , and n of $n \times n$ squares to cover it.

For example, a possible tessellation for n = 8 is in Figure 2. This is a 36×36 square covered by an 1×1 square, two of 2×2 squares, three of 3×3 squares, four of 4×4 squares, five of 5×5 squares, six of 6×6 squares, seven of 7×7 squares, and eight of 8×8 squares.

7		6		7			7		5		4	
7		6		5			6	5		3 ⁴ 7		
6	3						7	5		7		
8		8			8			6			6	
8		8			8			8			4	

Figure 2: A square tessellation of a 36×36 square.

Please provide a pseudocode of the algorithm to find this kind of tessellation.

3. Write a code based on your algorithm to find this kind of tessellations. Please provide a tessellation for n = 8 which is different from the one in Figure 2.