Section 2.1

1. a) $\{-1,1\}$ b) $\{1,2,3,4,5,6,7,8,9,10,11\}$ c) $\{0,1,4,9,16, 25, 36, 49, 64, 81\}$ d) Ø

7. Determine whether each of these pairs of sets are equal.
a) {1, 3, 3, 3, 5, 5, 5, 5, 5, 5}, {5, 3, 1}
b) {{1}}, {1, {1}}
c) Ø, {Ø}
Sol: a) Yes b) NO, since 1 and ξ13 are different,
c) NO, since φ and ξφ3 are different

13. Determine whether each of these statements is true or false.

a)
$$x \in \{x\}$$
 b) $\{x\} \subseteq \{x\}$ c) $\{x\} \in \{x\}$
d) $\{x\} \in \{\{x\}\}$ e) $\emptyset \subseteq \{x\}$ f) $\emptyset \in \{x\}$
 $Sol:$ a) Time, "the element" x belongs to the set $\{x\}$
b) Time, a set is its own subset.
c) false, "the element" $\{x\}$ is not in the set $\{x\}$
d) Time, "the element" $\{x\}$ belongs to the set $\{x\}$
c) Time, "the element" $\{x\}$ belongs to the set $\{x\}$
d) Time, "the element" $\{x\}$ belongs to the set $\{\{x\}\}$
e) Time, "empty set is subset of any set.
f) folse, "the element" \emptyset is NOT in $\{x\}$.

21. What is the cardinality of each of these sets?

a) $\{a\}$ b) $\{\{a\}\}$ Sol: a) $|\{a\}| = 1$, b) $|\{\{a\}\}| = 1$

29. a) $\{(a, y), (b, y), (c, y), (d, y), (a, z), (b, z), (c, z), (d, z)\}$ b) $\{(y, a), (y, b), (y, c), (y, d), (z, a), (z, b), (z, c), (z, d)\}$

30. What is the Cartesian product $A \times B$, where A is the set of courses offered by the mathematics department at a university and B is the set of mathematics professors at this university? Give an example of how this Cartesian product can be used.

Sol: $A \times B = \begin{cases} (C, p) & C: course in Math department, p: professor in Math department \\ C \in A and p \in B. \end{cases}$ **33.** Let *A* be a set. Show that $\emptyset \times A = A \times \emptyset = \emptyset$. $\phi x A = \{(b,a) \mid b \in \phi \text{ and } a \in A\}$ and $\phi = \{\{i\}\}$ To show $\phi x A = \phi$, we have to show since (b,a) \$\$\$, then it means b \$\$\$ and a \$\$\$ However, $b \notin \phi$ is a contradiction of $(b, a) \in \phi \times A$ (it implies $b \in \phi$) Therefore, any given (b, a) E \$XA is also an element of \$ and this proves $\phi \times A \subseteq \phi$. Similarly, $Ax\phi = \phi$ by defining $Ax\phi = \overline{z}(a,b)|a\in A$ and $b\in \phi^{2}$

Thus, we have $\oint x A = \oint = A \times \oint$.

37. How many different elements does $A \times B$ have if A has m elements and B has n elements?

Sol. Since $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$, then it totally has $n \cdot m$ combination which means $A \times B$ has nm elements