Section 3.2

In Exercises 1–14, to establish a big-*O* relationship, find witnesses *C* and *k* such that $|f(x)| \le C|g(x)|$ whenever x > k.

1. Determine whether each of these functions is O(x).

a)
$$f(x) = 10$$

b) $f(x) = 3x + 7$
c) $f(x) = x^2 + x + 1$
e) $f(x) = \lfloor x \rfloor$
for $x > 10 \Rightarrow f(x) = 5 \log x$
f) $f(x) = \lfloor x/2 \rfloor$
Sol: a) $|10| < 1 \cdot \lfloor x \rfloor \xrightarrow{for} x > 10 \Rightarrow f(x) = 5 0 x$ with $C = 1$, $k = 10$
b) $|3xt7| < |3x + x| < 4|x|$ for $x > 7 \Rightarrow f(x) = 5 0 x$) with $C = 4$, $k = 7$
c) $|fxy| = |x^2 + x + | < |x^2 + x^2 + 3|x^2|$ for $x > 1 \Rightarrow f(x) = 0x^2$, not $0x$.
d) $|fxy| = |5 \log |x| < |5x| < 5|x|$ for $x > 0 \Rightarrow f(x) = 5 0 x$ with $C = 1$, $k = 0$
e) $|fxy| = \lfloor |x_{\perp}| < |x|$ for $x > 0 \Rightarrow f(x) = 5 0 x$ with $C = 1$, $k = 0$
f) $|fxy| = \lfloor |x_{\perp}| < 1 + |x|$ for $x > 2 \Rightarrow f(x) = 5 0 x$ with $C = 1$, $k = 2$

3. Use the definition of "f(x) is O(g(x))" to show that $x^4 + 9x^3 + 4x + 7$ is $O(x^4)$. Sol: $|f(x)| = |x^4 + 9x^3 + 4x + 7| < |x^4 + 9x^4 + 4x^4 + 7)x^4| < |z|x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4 + 9x^4| < |z|x^4| < |x| = |x^4| + 9x^4 + 9x^4 + 9x^4 + 9x^4| < |z| = |x| =$

5. Show that
$$(x^2 + 1)/(x + 1)$$
 is $O(x)$.

$$\frac{Sol:}{\left|\frac{x^2+1}{x+1}\right| < \left|\frac{x^2+1}{x}\right| < \left|\frac{x^2+x^2}{x}\right| < \left|\frac{2x^2}{x}\right| < 2|x|, \text{ for } x > 1$$

$$\Rightarrow \frac{x^2+1}{x+1} \text{ is } O(x) \text{ with } C=2, k=1.$$

7. Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.

a)
$$f(x) = 2x^{3} + x^{2} \log x$$

b) $f(x) = 3x^{3} + (\log x)^{4}$
c) $f(x) = (x^{4} + x^{2} + 1)/(x^{3} + 1)$
d) $f(x) = (x^{4} + 5 \log x)/(x^{4} + 1)$
Sol:
a) $|f(x)| < [2x^{3}[t]^{2} \log x] \le [2x^{3}[t + [x^{2}x]] < 3[x^{3}] , x > [$
 $\log x < x$
 $\Rightarrow f(x) is 0 (x^{3})$ with $C = 3, k = [$
b) $|f(x)| < [3x^{3}] + [(\log x))^{4}| < [3x^{3}[t + [x^{3}] < 4 + [x^{3}]] , x > [$
 $(\log x)^{4} < x^{3}$
 $\Rightarrow f(x) is 0 (x^{3})$ with $C = 4, k = [$
c) $|f(x)| = \left| \frac{x^{4} + x^{2} + 1}{x^{3} + 1} \right| < \left| \frac{x^{4} + x^{4} + x^{4}}{x^{3}} \right| < 3 \left| \frac{x^{4}}{x^{3}} \right| = 3|x|, x > [$
 $x^{2} < x^{4}; |cx^{4}; thus the numerator gets larger x^{3} + 1 > x^{3}; thus the denominator gets smaller$
 $\Rightarrow f(x) is 0 (x^{1})$ with $C = 3, k = [$
d) $|f(x)| = \left| \frac{x^{4} + 5 \log x}{x^{4} + 1} \right| < \left| \frac{x^{4} + 5x^{4}}{x^{4}} \right| < 6 \left| \frac{x^{4}}{x^{4}} \right| = 6, x > [$
 $\log x) < x^{4}$
 $\Rightarrow f(x) is 0 (1)$ with $C = 6, k = [$

9. Show that
$$x^{2} + 4x + 17$$
 is $O(x^{3})$ but that x^{3} is not $O(x^{2} + 4x + 17)$.
Sol: Show that $x^{2} + 4x + 17$ is $O(x^{3})$:
 $|x^{2} + 4x + 17| \le O(x^{3})$:
 $|x^{2} + 4x + 17| \le O(x^{3})$ with $C = 22$, $k = 1$
Show x^{3} is NOT $O(x^{2} + 4x + 17)$:
 $\lim_{X \to \infty} \frac{x^{3}}{x^{2} + 4x + 17} = \lim_{X \to \infty} \frac{3x^{2}}{2x + 4x} = \lim_{X \to \infty} \frac{6x}{2} \longrightarrow and$
 $\frac{1}{100}$
it means that we cannot find a C and k such that
 $|x^{3}| < C(|x^{2} + 4x + 17)|$ for $x > k \Rightarrow x^{3}$ is NOT $O(x^{2} + 4x + 17)$
11. Show that $3x^{4} + 1$ is $O(x^{4}/2)$ and $x^{4}/2$ is $O(3x^{4} + 1)$.
Sol: Show $\frac{4}{2} + \frac{1}{15} O(\frac{x^{4}}{2})$:
 $|3x^{4} + 1| < |3x^{4} + x^{4}| < 4|x^{4}| < 8| \frac{x^{4}}{2}| , x > 1$.
 $\Rightarrow 3x^{4} + 1$ is $O(x^{4}/2)$ with $C = 8$. $k = 1$.
Show that $\frac{x^{4}}{2}$ is $O(3x^{4} + 1)$:
 $|\frac{x^{4}}{2}| < |x^{4}| < |3x^{4}| > 1$ is $O(x^{4}/2)$.
 $|\frac{x^{4}}{2}| < |x^{4}| < |3x^{4}| > 1$.
Show that $\frac{x^{4}}{2}$ is $O(3x^{4} + 1)$.
 $\Rightarrow 3x^{4} + 1$ is $O(x^{4}/2)$ with $C = 8$. $k = 1$.
Show that $\frac{x^{4}}{2}$ is $O(3x^{4} + 1)$.
 $|\frac{x^{4}}{2}| < |x^{4}| < |3x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4}| < |x^{4}| > 1$.
 $|x^{4}| < |x^{4$

this is a special case of Exercise 60.) <u>Sol</u>: Show that 2^n is $O(3^n)$: $|2^n| < |3^n|$. $h > 1 \Rightarrow 2^n$ is $O(3^n)$ with C = [. F =]To show 3^n is not $O(2^n)$, we assume 3^n is $O(2^n)$, it means that there is a C > O such that

$$3^{n} \leq c \cdot z^{n}$$
 for a $n > k$.
It implies that $\left(\frac{3}{2}\right)^{n} \leq c$ for a $n > k$.
However, since $\frac{3}{2} > 1$, there is no upper bound for $\left(\frac{3}{2}\right)^{n}$ and
such c won't exist, a contradicition.
 $\Rightarrow 3^{n}$ is not $O(2^{n})$

- 15. Explain what it means for a function to be O(1). If a function finits O(1), it means that there is a CC, k) sit. $|f(n)| \leq C \cdot |$ for n > k. It implies that f(n) is bounded for sufficiently large n.
- **17.** Suppose that f(x), g(x), and h(x) are functions such that f(x) is O(g(x)) and g(x) is O(h(x)). Show that f(x) is O(h(x)).Sol: If for is O(gox), then there is a (cp. K) such that $|f(x)| \leq C_1 |g(x)|$ for $x > K_1$ - \mathbb{O} If g(x) is O(h(x)), then there is a CC_2, F_2) $\frac{K_2 > F_1}{K_2 > F_1}$ such that $|g(x)| \leq C_2 |h(x)|$ for $x > k_2 - C_2$. Then, by O, D, We have CI, C2, and K2 such that $|f_{\infty}| \leq C_1 |g_{\infty}| \leq C_1 \cdot C_2 |h_{\infty}|$, $x > k_2$. => If (x) < C(C2 (hox)), x>K2 Therefore for is o chos) with GCz and R=kz. **19.** Determine whether each of the functions 2^{n+1} and 2^{2n} is $O(2^{n})$. For 2^{n+1} , we have $|2^{n+1}| \leq |2 \cdot 2^n| \leq 2|2^n|$, n > 1 $\Rightarrow 2^{n+1}$ is $O(2^n)$ with C=2, K=1For 2^n , we have $2^n = (2^2)^n = 4^n$, since 4>2, then

 $4^{n} > 2^{n}$ which implies $2^{2^{n}}$ is not $O(2^{n})$.

21. Arrange the functions \sqrt{n} , 1000 log *n*, *n* log *n*, 2*n*!, 2^{*n*}, 3^{*n*}, and $n^2/1,000,000$ in a list so that each function is big-*O* of the next function.

$$\frac{Sol}{1000 \log n}, Jn, n \log n, \frac{n^2}{1000000}, 2^n, 3^n, 2n!$$

- 23. Suppose that you have two different algorithms for solving a problem. To solve a problem of size *n*, the first algorithm uses exactly $n(\log n)$ operations and the second algorithm uses exactly $n^{3/2}$ operations. As *n* grows, which algorithm uses fewer operations?
 - which algorithm uses fewer operations? Since $\log n < n^{\frac{1}{2}}$, then $n \log n < n^{\frac{3}{2}}$. Thus, when n gets larger, the first algorithm uses fewer operations than the second one.
 - **25.** Give as good a big-*O* estimate as possible for each of these functions.

a)
$$(n^{2} + 8)(n + 1)$$

b) $(n \log n + n^{2})(n^{3} + 2)$
c) $(n! + 2^{n})(n^{3} + \log(n^{2} + 1))$
Sol a) $[(n^{2}+8)(n+1)] = [n^{3}+n^{2}+8n+8] < |n^{3}+n^{3}+8n^{3}| < l8|n^{3}|$
 $\Rightarrow (n^{2}+8)(n+1)$ is $O(n^{3})$
b) $[(n \log n + n^{2})(n^{3}+2)] < [(n^{3}+2)(n^{3}+2)] < |2n^{2}+2n^{3}| < 4|n^{5}|$
 $\Rightarrow (h \log n + n^{2})(n^{3}+2)$ is $O(n^{5})$
c) $[(n!+2^{n})(n^{3}+\log(n^{3}+1))] < [(n!+n!)(n^{3}+n^{3})] < 4|n!n^{3}|$
 $\Rightarrow (n!+2^{n})(n^{3}+\log(n^{3}+0))$ is $O(n!n^{3})$

27. Give a big-O estimate for each of these functions. For the function g in your estimate that f(x) is O(g(x)), use a simple function g of the smallest order.

a)
$$n \log(n^{2} + 1) + n^{2} \log n$$

b) $(n \log n + 1)^{2} + (\log n + 1)(n^{2} + 1)$
c) $n^{2^{n}} + n^{n^{2}}$
a) $\log f(n) = n \log(n^{2}+1) + n^{2}\log n$, we have
 $|f(n)| < |n \log(n^{2}+n^{2}) + n^{2}\log n| < |n \log(2n^{2}) + n^{2}\log n|$
 $< |n \log_{2} + n \log n^{2} + n^{2}\log n| < |n \log(2n^{2}) + n^{2}\log n|$
 $< |n \log_{2} + 2n \log n^{2} + n^{2}\log n| < |n^{2}\log n| < |n^{2}\log n + 2n^{2}\log n + n^{2}\log n| < |n^{2}\log n + 2n^{2}\log n + n^{2}\log n| < |n^{2}\log n + 2n^{2}\log n + n^{2}\log n| < |n^{2}\log n + 2n^{2}\log n + n^{2}\log n| < |n^{2}\log n + 2n^{2}\log n + n^{2}\log n| < |n^{2}\log n^{2} + 2n^{2}\log n + 1 + n^{2}\log n| < |n^{2}\log n^{2} + 2n^{2}\log n + 1 + n^{2}\log n| < |n^{2}\log n^{2} + 2n^{2}(\log n^{2}) + 2n\log n + (1 + n^{2}\log n) + n^{2}\log n^{2} + n^{2}(\log n^{2}) + 2n^{2}(\log n^{2}) + 2n^{2}(\log n^{2}) + 2n^{2}(\log n^{2}) + n^{2}(\log n^{2}) +$

- **34.** a) Show that $3x^2 + x + 1$ is $\Theta(3x^2)$ by directly finding the constants k, C_1 , and C_2 in Exercise 33.
 - **b**) Express the relationship in part (a) using a picture showing the functions $3x^2 + x + 1$, $C_1 \cdot 3x^2$, and $C_2 \cdot 3x^2$, and the constant *k* on the *x*-axis, where C_1, C_2 , and *k* are the constants you found in part (a) to show that $3x^2 + x + 1$ is $\Theta(3x^2)$.

Sol Lot
$$f(x) = 3x^2 + x + 1$$
.
a) To find a big-0 estimate of foo, we have
 $|f(x)| \leq |3x^2 + x + 1| < |3x^2 + x^2 + x^2| < 5|x^2|$, $x > 1$
 $\Rightarrow f(x) = 0$ (x²) with $G = 5$, $k = 1$.
 $\Rightarrow f(x) = 0$ (x²) with $G = 5$, $k = 1$.
 $\Rightarrow f(x) = |3x^2 + x + 1| > |3x^2| > 3|x^2|$, $x > 1$
 $\Rightarrow f(x) = |3x^2 + x + 1| > |3x^2| > 3|x^2|$, $x > 1$
 $\Rightarrow f(x) = |3x^2 + x + 1| > |3x^2| > 3|x^2|$, $x > 1$
 $\Rightarrow f(x) = |3x^2 + x + 1| > |3x^2| > 3|x^2|$, $x > 1$
 $\Rightarrow f(x) = 1$ (x²) with $C_2 = 3$, $k = 1$
 $\Rightarrow f(x) = 0$, $f(x) = 0$ (x²)
b)

35. Express the relationship f(x) is $\Theta(g(x))$ using a picture. Show the graphs of the functions f(x), $C_1|g(x)|$, and $C_2|g(x)|$, as well as the constant k on the x-axis.

36. Explain what it means for a function to be Ω(1). Let f(n) be Ω(1). It means that |f(m)| > C|1| for a sufficiently large n. It implies that f(n) has a lower bound.

- 37. Explain what it means for a function to be Θ(1).
 Let f(n) be ⊕(1). It means that there exists C1,C2 such that C2[1] < [f(n)] < C1 [1] for a sufficiently large n. Thus, f(n) is bounded between C1, and C2.
 - **38.** Give a big-*O* estimate of the product of the first *n* odd positive integers.
 - Let $f(n) = |\cdot 3 \cdot 5 \cdot 7 \cdots (2n-1)$. We have $|f(n)| < |2 \cdot 4 \cdot 6 \cdot 5 \cdots 2n| < |2^{n} \cdot n!|$, n > 1 $\Rightarrow f(n)$ is $O(2^{n} \cdot n!)$ when C = 1, k = 1.

39. Show that if *f* and *g* are real-valued functions such that f(x) is O(g(x)), then for every positive integer *n*, $f^n(x)$ is $O(g^n(x))$. [Note that $f^n(x) = f(x)^n$.]

Since for is O(gos), it means that there exists C, K such that [fos)| < C(gos)| for X > K, then n times $\frac{n \text{ times}}{|fos| \cdot |f(x)| \cdot \cdots \cdot |f(x)|} < C(gos)| \cdot C(gos)| \cdot \cdots \cdot C(gos)|$ $\Rightarrow |fos| < c^n |gos)|$ for X > K. It means that $f^n(x)$ is $O(g^n(x))$ with C and K. **40.** Show that for all real numbers *a* and *b* with a > 1 and b > 1, if f(x) is $O(\log_b x)$, then f(x) is $O(\log_a x)$.

since $\log_b X = \frac{\ln X}{\ln b}$ and $\log_d X = \frac{\ln X}{\ln a}$ where $\ln b$, $\ln a$ are two constants. Then, if for is $O(\log_b X)$, we have $|f \infty| < C |\log_b X|$ for x > K. $\leq C |\frac{\ln x}{\ln b}| \leq \frac{\ln b}{\ln a} \overline{C} |\frac{\ln x}{\ln b}| \leq \overline{C} |\log_a X|$ which implies for is $O(\log_a X)$.

- **41.** Suppose that f(x) is O(g(x)), where f and g are increasing and unbounded functions. Show that $\log |f(x)|$ is $O(\log |g(x)|)$.
 - Since $\log x$ is strictly increasing , then $< x_1 < x_2$ implies $\log x_1 < \log x_2$ Since for is O(goo), it means there exists $C_1 K$ such that (for) < C(goo) for x > K.
 - Then, putting IfoxI, C(gox) in log x, we have log(Ifox)I) < log(C(1gox)I) = logC + log(1gox)I a constant $< \overline{C} \cdot log(1gox)I$, $\overline{C} = logC + I$. $\Rightarrow log(Ifox)| \overline{r} = 0$ (log(1gox)L.)

- **42.** Suppose that f(x) is O(g(x)). Does it follow that $2^{f(x)}$ is $O(2^{g(x)})$?
 - No. For example, let f(x) = 2X, we have $|f(x)| < 2|x|, x > 1 \Rightarrow f(x) is O(x)$ so g(x) = x. Then $2^{f(x)} = 2^{2X} = (2^2)^X = 4^X$ and $2^{g(x)} = 2^X$, we have $4^X > 2^X$ for x > 1, and 4^X is not $O(2^X)$ $\Rightarrow 2^{f(x)}$ is not $O(2^{g(x)})$.