Section 2.3

- 3. Determine whether f is a function from the set of all bit strings to the set of integers if
 - a) f(S) is the position of a 0 bit in S.
 - **b**) f(S) is the number of 1 bits in S.
 - c) f(S) is the smallest integer *i* such that the *i*th bit of *S* is 1 and f(S) = 0 when *S* is the empty string, the string with no bits.
- Sel a) NOT a function.
 For those bit strings , S with multiple zeros , F(S) have more than one value , which means one input gets multiple outputs , thunfore F(S) is NOT a function
 b) It's a function.
 For each bit string, S , the number of 1 bits in S is a fixed and unique number. Thus, F(S) is a function

9. Find these values.

c) Not a function.

a) $\lceil \frac{3}{4} \rceil = 1$ b) $\lfloor \frac{7}{8} \rfloor = 0$ c) $\lceil -\frac{3}{4} \rceil = 0$ d) $\lfloor -\frac{7}{8} \rfloor = -1$ e) $\lceil 3 \rceil = 3$ f) $\lfloor -1 \rfloor = -1$ g) $\lfloor \frac{1}{2} + \lceil \frac{3}{2} \rceil \rfloor = \lfloor \frac{1}{2} + 2 \rfloor = 2$ h) $\lfloor \frac{1}{2} \cdot \lfloor \frac{5}{2} \rfloor \rfloor = \lfloor \frac{1}{2} \cdot 2 \rfloor = 1$ **10.** Determine whether each of these functions from $\{a, b, c, d\}$ to itself is one-to-one. **a**) f(a) = b, f(b) = a, f(c) = c, f(d) = d**b**) f(a) = b, f(b) = b, f(c) = d, f(d) = cc) f(a) = d, f(b) = b, f(c) = c, f(d) = d(c) (b) $b \rightarrow b$ $c \times c$ $d \times d$ (α) a Za b $c \rightarrow c$ d --> d NO, atd but NO. Q=b Tes, different input f(a) = f(d)but f(a)=f(b) gets different output

12. Determine whether each of these functions from Z to Z is one-to-one.

a) f(n) = n - 1b) $f(n) = n^2 + 1$ c) $f(n) = n^3$ d) $f(n) = \lceil n/2 \rceil$

Sol a). Yes, if f(a) = f(b) for $a, b \in \mathbb{Z}$, then $a + = b + \Rightarrow a = b$ b) NO, lot a = 1, b = -1, we have $f(a) = i^2 + 1 = 2$ and f(b) = i + 1 = 2Since $a \neq b$ and f(a) = f(b), then $f(a) = i^3$ NOT i - 1c) Yes, if f(a) = f(b) for $a, b \in \mathbb{Z}$, then $a^2 = b^3 \Rightarrow 3a^3 - 3b^3$ $\Rightarrow a = b^3$ d) NO, let a=2, b=3, we have $f(a)=\lceil \frac{2}{2}\rceil = 1$ and $f(b)=\lceil \frac{2}{2}\rceil = 1$, since $a \neq b$ and f(a) = f(b), then f is NOT i-1

15. Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if **a**) f(m, n) = m + n. **b**) $f(m, n) = m^2 + n^2$. **c**) f(m, n) = m. **d**) f(m, n) = |n|. e) f(m, n) = m - n. Sol, a) Yes, any integer can be represented by the addition of the other two integers b) NO, Since $m^2 + n^2 > 0$, then if the output is a negative integer, there is NO such MINEZ that $m^2 + n^2 = \alpha$ negative integer. c) Yes. For each output mEZ, there is an input mEZ Such that f(m,n) = Md) No. since $f(m,n) = |n| \ge 0$, then there is no negative integer as an output. which means those negative integers have no input. e) Tes, any integer can be represented by a subtration of two integers.

20. Give an example of a function from N to N that is

- a) one-to-one but not onto.
- **b**) onto but not one-to-one.
- c) both onto and one-to-one (but different from the identity function).
- d) neither one-to-one nor onto.

Sol: (a) $f(x) = x^2$ (since a, bein) Not onto, if $f(x) = 3 \Rightarrow x = \sqrt{3 + N}$, (b) $f(x) = \begin{bmatrix} x \\ z \end{bmatrix}$ (c) $f(x) = \begin{bmatrix} x \\ z \end{bmatrix}$ nto: for each output GIN, there is an input en. (c) $f(x) = \lceil x \rceil$ (identify function is f(x) = x) or $f(x) = \lfloor x \rfloor$ (identify function is f(x) = x) or $f(x) = \lfloor x \rfloor$ (identify function is f(x) = x) (a) $f(x) = (x-3)^2$ (NOT $1-1: x=2 \Rightarrow f(2) = 1$ $4 \neq 2$ but f(2) = -f(4). NOT ONTO $f(x) = 2 \Rightarrow (x-3)^2 = 2$ ⇒ X= 3± [2

23. Determine whether each of these functions is a bijection from **R** to **R**.

a)
$$f(x) = 2x + 1$$

b) $f(x) = x^2 + 1$
c) $f(x) = x^3$
d) $f(x) = (x^2 + 1)/(x^2 + 2)$

Set: (a) fix = 2x+1.
(b) Prove f is 1-(: if fig) = fib),
$$\Rightarrow 2at|= 2bt|$$

 $\Rightarrow 2a=2b \Rightarrow a=b$. then f is 1-1.
(c) Prove f is onto: lot $y=2x+1$, for all $y\in A$,
we have $x=\frac{y-1}{2}\in R$, then f is onto
(b) $fox|=x^2+1$.
(c) Not one-to-one:, lot $a=1, b=-1$, then fig)=1+1=2
It means at b bet fag=fib), then f is not $i-1$.
(c) $fox=x^3$
(c) $fox=fix)$ is one-to-one:
Let $fix)=f(b)$, we have $a^3=b^3 \Rightarrow 3a=3b^3$
 $\Rightarrow a=b$.
(c) $fox=x^3$
(c) $fox=x^3$

→ Xtl=0 → X=±c~&R. f is NOT a bijedim

30. Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if **b**) f(x) = 2x + 1. **a**) f(x) = 1. **d**) $f(x) = |(x^2 + 1)/3|$. c) f(x) = [x/5]. <u>Sol</u>: a) f(-1)=1, b) f(x)=2x+1. f(-1) = 2(-1) + | = -1f(0) = 1f(0) = 2(0) + | = |f(2) = | $f(2) = 2 \cdot 2 + 1 = 5$ 千(4)>1 f(4) = 2.4 + 1 = 9f(0) = 1 $f(x) = z \cdot 7 + 1 = 15$ d) $f(x) = L \frac{(x^2 + 1)}{3}$ c) f(x)= [巻] 우(-1) = [글] = 0 $f(H) = \left[\frac{f(1)^{2} + 1}{2} \right] = \left[\frac{2}{3} \right] = 0$ f(o) = [e] = 0 $f(0) = \left| \frac{0 + \left[1 + \frac{1}{3} \right]}{2} \right| = 0$ $f(2) = r\frac{2}{2} = 1$ f(4)=「装了=1 $f(2) = \left| \frac{2^2 + 1}{3} \right| = \left| \frac{5}{3} \right| = 1$ f()=「シーニン $f(4) = |\frac{16+1}{2}| = |\frac{19}{3}| = 5$

 $f(y) = \left\lfloor \frac{49+1}{3} \right\rfloor = \left\lfloor \frac{50}{3} \right\rfloor = 16$

- **33.** Suppose that g is a function from A to B and f is a function from B to C.
 - a) Show that if both f and g are one-to-one functions, then $f \circ g$ is also one-to-one.
 - **b**) Show that if both f and g are onto functions, then $f \circ g$ is also onto.

Proof (a): "f is one-to-one" implies
$$f(s) = f(t) \Rightarrow s = t$$

"g is one-to-one" implies $g(a) = g(b) \Rightarrow a = b$
To show fog is one to one, bt $(f \circ g)(a) = (f \circ g)(b)$
 $\Rightarrow f(g(a)) = f(g(b)) \Rightarrow g(a) = g(b)$
 $f(g(a)) = f(g(b)) \Rightarrow g(a) = g(b)$
 $f(g(a)) = f(g(b)) \Rightarrow g(a) = g(b)$
It means $(f \circ g)(a) = (f \circ g)(b)$ implies $a = b$.
Thurefore fog is one-to-one
Proof (b): "f is onto": For each element ^c in C, there is a beB
 $f: B \Rightarrow c$
 $g(a) = g(b) \Rightarrow g(a) = g(b) = c$
 $f(g(a)) = f(g(b)) \Rightarrow g(a) = g(b) = c$
 $f(g(b)) = f(g(b)) \Rightarrow g(a) = g(b) = c$
 $f(g(b)) = f(g(b)) \Rightarrow g(a) = g(b) = c$
 $f(g(b)) = f(g(b)) \Rightarrow g(a) = b$
To show fog is onto"; for each element b in B, there is
 $g(a) = b$
To show fog is onto; for each $c \in C$, since
 $(f(g(b)))$
 f is onto, there exist $g(x) = b$ such that $f(g(a)) = c$.
Since g is onto, for each b, there exists a $B \in A$
such that $g(a) = b$
 \Rightarrow for each $c \in C$, there exists a $B \in A$ such that

$f(g(a)) = c \Rightarrow f(g(x))$ is onto,

41. Show that the function f(x) = ax + b from **R** to **R**, where *a* and *b* are constants with $a \neq 0$ is invertible, and find the inverse of *f*.

<u>Sol</u>: OTO show f(x)=axtb from IR to IR with a to is invertible. We need show f(x) is bijective.

- (1) To show for is one-to-one, let $f(\varsigma) = f(t)$. $\Rightarrow a_{\varsigma+b} = at+b \Rightarrow a_{\varsigma} = at \Rightarrow \varsigma = t$ Which means $f(\varsigma) = 1$
- (2) To show for is onto. Let y=ax+b. For all $y \in \mathbb{R}$, we have $ax = y-b \Rightarrow x = \frac{y-b}{a} \in \mathbb{R}$

Thus, f is outo.

By (1), (2) f is bijective \Rightarrow f is invertible. B Find f^{-1}

(1) Let f(x) = y: y = axth(2) swith x & y: x = ay + b(3) solve for y: $ay = x - b \Rightarrow y = \frac{x - b}{a}$ (4) replace y by f(x): $f(x) = \frac{x - b}{a}$ Let *f* be a function from the set *A* to the set *B*. Let *S* be a subset of *B*. We define the **inverse image** of *S* to be the subset of *A* whose elements are precisely all preimages of all elements of *S*. We denote the inverse image of *S* by $f^{-1}(S)$, so $f^{-1}(S) = \{a \in A \mid f(a) \in S\}$. [Beware: The notation f^{-1} is used in two different ways. Do not confuse the notation introduced here with the notation $f^{-1}(y)$ for the value at *y* of the inverse of the invertible function *f*. Notice also that $f^{-1}(S)$, the inverse image of the set *S*, makes sense for all functions *f*, not just invertible functions.]

44. Let f be the function from \mathbf{R} to \mathbf{R} defined by

$$f(x) = x^{2}. \text{ Find}$$
a) $f^{-1}(\{1\}).$
b) $f^{-1}(\{x \mid 0 < x < 1\}).$
c) $f^{-1}(\{x \mid x > 4\}).$

$$Solf a) f^{-1}(\{x \mid x > 4\}).$$

$$Solf a) f^{-1}(\{\xi \mid \xi\}) = \{-1, +|\xi|\}$$
b) $f^{-1}(\{\xi \mid \xi\}) = \{-1, +|\xi|\}$
b) $f^{-1}(\{\xi \mid \xi\}) = \{-1, +|\xi|\}$
c) $f^{-1}(\{\xi \mid \xi\}) = \{-1, +|\xi|\}$
c) $f^{-1}(\{\xi \mid \xi\}) = \{-1, +|\xi|\}$
d) $f^{-1}(\{\xi \mid \xi\}) = \{-1, +|\xi|\}$
for all $f^{-1}(\{\xi \mid \xi\}) = \{-1, +|\xi|\}$
f

46. Let *f* be a function from *A* to *B*. Let *S* and *T* be subsets of *B*. Show that

a)
$$f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$$
.
b) $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$.
Sol: $\Re Since \ '' f^{-1}(S \cup T)'' \text{ and } \Re f^{-1}(S) \cup f^{-1}(T)'' \text{ are}$
sets, then, to show (a) is true, we need
 $f \circ prove:$
 $\Im f^{-1}(S \cup T) \subseteq f(S) \cup f(T) \text{ and } \oiint f^{-1}(S \cup T) \supseteq f(S) \cup f^{-1}(T)$
prove:
 $\Im f^{-1}(S \cup T) \subseteq f(S) \cup f^{-1}(T) \text{ and } \oiint f^{-1}(S \cup T) \supseteq f^{-1}(S) \cup f^{-1}(T)$
prove:
 $\Im f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T) \text{ and } \oiint f^{-1}(S \cup T) \supseteq f^{-1}(S) \cup f^{-1}(T)$
 $\Re f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T) \text{ and } \oiint f^{-1}(S \cup T) \supseteq f^{-1}(S) \cup f^{-1}(T)$
 $\Rightarrow f(S) \subseteq S \cup T \text{ for } F^{-1}(S) = f^{-1}(S) \cup f^{-1}(T)$
 $\Rightarrow f(S) \subseteq S \cup F^{-1}(T) \text{ for } f^{-1}(S) \cup f^{-1}(T)$
 $\Rightarrow x \in f^{-1}(S) \cup f^{-1}(T) \text{ for } f^{-1}(S) \cup f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S) \cup f^{-1}(T) \text{ for } f^{-1}(S) \cup f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S) \cup f^{-1}(T) \text{ for } f^{-1}(S) \cup f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T) \text{ we need for show } \Omega f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T) \text{ for } f^{-1}(S) \cap f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T) \text{ and } \circledast f^{-1}(S \cap T) \supseteq f^{-1}(S) \cap f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T) \text{ for } f^{-1}(S \cap T) \supseteq f^{-1}(S) \cap f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T) \text{ for } f^{-1}(S \cap T) \supseteq f^{-1}(S \cap T) \subseteq f^{-1}(S \cap T) \cap f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T) \text{ for } f^{-1}(S \cap T) \supseteq f^{-1}(S \cap T) \cap f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S \cap T) \cap f^{-1}(T) \supseteq f^{-1}(S \cap T) \supseteq f^{-1}(S \cap T) \cap f^{-1}(T)$.
 $\Re f^{-1}(S \cap T) \subseteq f^{-1}(S \cap T) \cap f^{-1}(T) \cap f^$

60. How many bytes are required to encode *n* bits of data where *n* equals **b**) 10? **c**) 500? **d**) 3000? **a**) 4? In example 29 (P158), each byte is made up of 8 bits. a) if n=4, we need $\lceil \frac{4}{8} \rceil = 1$ byte b) if n=10, we need [10]=2 bytes c) if n = 500, we need $\lceil \frac{500}{8} \rceil = \lceil 62.5 \rceil = 63$ bytes d) if n = 3000, we need $\lceil \frac{3000}{5} \rceil = \lceil 375 \rceil = 375$ bytes. 61. How many bytes are required to encode *n* bits of data where *n* equals **b**) 17? **c**) 1001? **d**) 28,800? **a**) 7? a) if n=7, we need $\lceil \frac{7}{8} \rceil = 1$ byte. b) if n=17, we need 「項]=「2#]=3 bytes c) if n=100], we need $\lceil \frac{100}{8} \rceil = \lceil 125\frac{1}{8} \rceil = \lceil 126 \text{ bytes}$ d) if n=28800, we need [28800] = [3600] = 3600 byty

- 62. How many ATM cells (described in Example 30) can be transmitted in 10 seconds over a link operating at the following rates?
 - a) 128 kilobits per second (1 kilobit = 1000 bits)
 - **b**) 300 kilobits per second
 - 1 megabit per second (1 megabit = 1,000,000 bits) **c**)

Sol: "53 bytes per call"
$$\Rightarrow$$
 "53.8 = 424 bits per call"
9) [28000 bits per second x 10 second = 1280000 bits
 $\left[\frac{128000}{424}\right] = \left[3018.86...\right] = 3018$ Calls
b) 300000 bits per sec. X 10 sec. = 3000000
 $\left[\frac{3000000}{424}\right] = \left[7075.47...\right] = 7075$ calls
c) [000000 bits per sec. X 10 sec. = 10000000
 $\left[\frac{10000000}{424}\right] = \left[23584.90...\right] = 23584$ Cells

- 63. Data are transmitted over a particular Ethernet network in blocks of 1500 octets (blocks of 8 bits). How many blocks are required to transmit the following amounts of data over this Ethernet network? (Note that a byte is a synonym for an octet, a kilobyte is 1000 bytes, and a $\frac{0\ 000}{1500}\ bytes] = 100\ blocks$ $\frac{384\ 000}{1500} = 256\ blocks$ megabyte is 1,000,000 bytes.) 150000 bytes 1500
 - a) 150 kilobytes of data
 - **b**) 384 kilobytes of data
 - c) 1.544 megabytes of data
 - d) 45.3 megabytes of data

c)
$$\left[\frac{544000}{1500}\right] = \left[\frac{1029.333}{1029.333}\right] = 1030 \text{ blocks}$$

d) $\left[\frac{45300000}{1500}\right] = \left[\frac{30200}{1500}\right] = 30200 \text{ blocks}.$