MAT2440, Classwork8, Spring2025

ID:_	Name:			
1. Quantifications:				
]	To create a proposition from a propositional function, we can use <u>quan to fication</u> , which			
e	express that a predicate is true over a range of elements. In English, <u>all</u> , <u>some</u> , <u>many</u> ,			
Y	$\sqrt{\sqrt{2}}$, and <u>few</u> are used for quantifications.			
	<u>All</u> students are here.			
	some people wear blue today.			
2. The Universal Quantifier '∀':				
6	$\forall x' \text{ means } for all x / for each x (in the domain).$			
The universal quantifications of $P(x)$, denoted by the notation $\forall x \ P(x)$, is the				
	statement Pox) for all value of x in the domain			
	and $\forall x P(x)$ is read as for all x_{2} products.			
	An element for which $P(x)$ is false is called a <u>Counterexample</u> to $\forall x P(x)$.			

3. If N(x) is "Computer x is connected to the network" and the domain consists of all computers on campus. What does the statement $\forall x N(x)$ mean?

Hx N(x) means "for every computer x on campus, the computer x is connected to the network" or "Every computer on campus is connected to the network"

4. Let P(x) be "x + 1 > x". What is the truth value of '∀xP(x)', where the domain consists of all real numbers?

 $\forall x p(x) \text{ means } \text{``for all real number } x, x t 1 > x ``$ and it is true. (Yxp(x) is true)

5. Determine the truth value of ' $\forall x(x^2 > 0)$ '.				
This means "for all ∞ , ∞^2 is greater than O".				
This is not true, because when $x=0 \implies \chi^2=0$				
and this statement is false counterexample				
6. The Existential Quantifier '∃':				
'Ix' means "There exists an x (in the domain)"				
The existential quantifications of $P(x)$, denoted by the notation $\exists x \not (x)$, is the				
statement there exists an element x in the domain such that PR and				
$(\exists x P(x))$ is read as thus exists an X such that $P(X)$.				
I . There is at least one x				
7. ° For some X,				

Statement	When Ture?	When False?
$\forall x P(x)$	pox) is true for all ac	There is an x for which PX) is false
$\exists x P(x)$	There is an x for which P(x)	pox) is false for all x

8. What is the meaning of $\exists x (x > 3)$ when the domain consists of all real number?

$$\exists x (x > 3)$$
 means "there exists a real number x such that
 $x > 3$ "
 $y > 3$ "
 $y = propositional$ familiar

9. What is the truth value of $\exists x(x > 3)$? From S, we have the proposition $\exists x(X > 3)$ and it is true.