MAT2440, Classwork46, Spring2025

3. Use mathematical induction to prove the inequality for all positive integer n

Proof: D show P(1) is true.
$$n < 2^n$$
, p(n) $n \in \mathbb{Z}^+$
 $| < \mathbb{Z}^1$ True $\Rightarrow P(k)$
 \textcircled{P} Assume P(k) is true. $K < 2^k$ is true.
 \textcircled{P} Prove P(k) $\Rightarrow P(kth)$
 $P(kth)$ looks like $1.H.S = ktf$
 $kt(< 2^{kth}$ based on the $\mathbb{Z} < 2^k + 1$ $1 < 2^k$, for $k \in \mathbb{Z}^+$
 $\leq 2^k + 2^k$ $1 < 2^k$, for $k \in \mathbb{Z}^+$
 $= 2 \cdot 2^k = 2^{kth} = R.H.S$
By induction, based $\textcircled{O}, \textcircled{O}, \textcircled{O}$, this statement is true for all $n \in \mathbb{Z}^+$

4. Use mathematical induction to prove the inequality for every positive integer $n \ge 4$

$$\int 2^n < n!$$