MAT2440, Classwork3, Spring2025

ID:

Name:

1. Find the **Converse**, the **Contrapositive**, and the **Inverse** of the given conditional statement.

2. The truth table of the Converse, Inverse, and Contrapositive of a conditional statement:

p	q	p ightarrow q	q ightarrow p	$\neg p$	$\neg q$	$\neg p ightarrow \neg q$	$ \neg q ightarrow \neg p$
T	Т	Т	Т	F	T-	Т	
Т	F	í-	Т	Ĩ,	Т	T	Ŧ
F	T	Т	F	T	F	F	T
F	F	Т	T	T	T	T	T

- 3. Using the truth table from 2. to answer the following questions.
 - (a)What do you observe from the results between "p → q" and "¬q → ¬p"?
 (b)What do you observe from the results between "q → p" and "¬p → ¬q"?

4. Definition of the **Biconditional statement** for two propositions:

Let p and q be two propositions. The <u>biconditional</u> <u>statement</u> " $p \leftrightarrow q$ " is the proposition "<u>p</u>if and only if <u>q</u>." Biconditional statements are also called bi- implication. pifq:q→p 3 p if and only if q ponly if q: p→q 3 p if and only if q

5. The truth table for the biconditional statement " $p \leftrightarrow q$ ":

p	q	p ightarrow q	q ightarrow p	$(p \rightarrow q) \land (q \rightarrow p)$	$p \leftrightarrow q$
Т	Т	Т	T	T	ſ
Т	Ч	F	Т	F	T
F	Т	T	F	F	F
F	F	T	Т	Т	Т

" $p \leftrightarrow q$ " is true when p and q have the <u>Same</u> truth values and is false otherwise.

6. Other ways to express the biconditional statements:

"p is sufficient and nocessary for q."
"if p then q, and conversely."
$$\begin{cases} p \iff q \\ p \iff q \end{cases}$$
"p exactly when q."

7. Given two propositions p and q. Find " $p \leftrightarrow q$ ".

p: "You can take the flight."; *q*: "You buy a flight ticket."

 $p \leftrightarrow q$: You can take the flight if and only if you buy a flight ticket