
MAT2440,	Classwork35,	Spring2025	
	

ID:______________________________________ Name:___

 1. The time complexity analysis of the binary search algorithm

 Outside the loop ____

 Therefore, the time complexity is

!(#) = _____________ = _____________ ∼ _____________ = _____________ = ((_________)
 which is _______________ complexity.

2. Binary search (((log	 #)) is _________ efficient than linear search (((#)).

procedure binary_search(-: integer, .!, .", ⋯ , .#: distinct integers)
≔ the length of {.$}
4 ≔ 1 (which is left end location)
6 ≔ # (which is right end location)

 while (4 ≤ 6) ←___ __________________
 m≔ 9$%&" : ←___ __________________
 if - > .' then 4 ≔ < + 1 ←___ __________________
 else 6 ≔ <
 if - = .$ then location ≔ 4
 else location ≔ 0
return location {either the subscript of the term that equals -, or 0 if - is not found.}

For simplicity assuming # =_____. Inside the loop
of elements

of operations

⊢ ⊣ 2(____
	
	
	
	
	
	
		⎭
⎪⎪
⎬
⎪⎪
⎫

 ___ times

⊢ ⊣ 2()! ____
⊢ ⊣ 2()" ____
							⋮ ⋮ ⋮
 2! ____
 2*=1 stop

1 comparison
2 operations add div
2 operations 1 comp Iadd

2k 5

2k 22 5while
k

5

20 1 if
n zk KFlogan

54 1 5log.int 5logacn 5 Y login

logarithmic changebase property

more

3. The worse-case time complexity analysis of the sorting algorithm: Bubble Sort.

Total operations:

 The time complexity is !(#) = __________ = 	((_____) which is ______________ complexity.

4. The worse-case time complexity analysis of the sorting algorithm: Insertion Sort.

Total operations:

 The time complexity is !(#) =																		= 	((_____) which is ______________ complexity.

procedure bubblesort(.!, .", ⋯ , .#: real numbers with # ≥ 2)
≔ the length of {.$}
 for 4 ∶= 1 to # − 1
 for 6 ∶= 1 to 	# − 4
 if .& > .&%! then interchange .& and .&%!
{.!, .", ⋯ , .# is in increasing order}

4 = 1, 6 = 1 to ________ ←_______ operations
	
	
	
	
	
J 4 = 2, 6 = 1 to ________ ←_______ operations

⋮ ⋮ ⋮
4 = ____, 6 = 1 to ____ ←_______ operations

procedure insertionsort(.!, .", ⋯ , .#: real numbers with # ≥ 2)
≔ the length of {.$}
 for 4 ∶= 2 to #
 6 ≔ 1
 while (.$ > .& and 4 > 6)
 6 ≔ 6 + 1
 < ≔ .$
 for K ∶= 0 to 4 − 6 − 1
 .$)(≔ .$)()!
 .& ≔ <
{.!, .", ⋯ , .# is in increasing order}

4 = 2, ." > .!, 2 > 1, 6 = ______ ←_______ operations
	
	
	
	
	
	
	
	
	
	⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

4 = 3,
	
	
	
M ←_______ operations

4 = 4,

	
	
	
	
O ←_______ operations ⋮

4 = #, ←_______ operations

11 11
comparisons

In1 ch21 h31 111 2 1

nt 1 1 1 12
11 m polynomial

2 3
93791 371 5 2
93792,3 2,53

3 2 343 213 3 3141
Ax 91 431.5 2

94792 472 5 3 3 3 3 142 3 4 11141447

EE 3xm s

3 ⁿᵗ1 m polynomial

Both the bubble sort and the insertion sort have the worse case

complexity o n

