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 1. The time complexity analysis of the binary search algorithm  

   

 

 

 

 

                                                                 Outside the loop         ____ 

     Therefore, the time complexity is  

!(#) = _____________ = _____________ ∼ _____________ = _____________ = ((_________) 
     which is _______________ complexity.      

 

2. Binary search (((log	 #)) is _________ efficient than linear search (((#)). 
 

 

 

 

procedure binary_search(-: integer, .!, .", ⋯ , .#: distinct integers) 
# ≔ the length of {.$} 
4 ≔ 1  (which is left end location) 
6 ≔ # (which is right end location) 

 while (4 ≤ 6 ) ←___ __________________ 
          m≔ 9$%&" :  ←___ __________________ 
          if - > .' then 4 ≔ < + 1             ←___ __________________ 
                            else 6 ≔ <             
 if - = .$ then location ≔ 4              
                    else  location ≔ 0              
return  location {either the subscript of the term that equals -, or 0 if - is not found.} 

For simplicity assuming # =_____. Inside the loop 
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3. The worse-case time complexity analysis of the sorting algorithm: Bubble Sort. 

 

 

 

 
 

Total operations: 

  

 

   The time complexity is !(#) = __________ = 	((_____) which is ______________ complexity. 

4. The worse-case time complexity analysis of the sorting algorithm: Insertion Sort. 

 

 

 

 

 

 

 

 

Total operations: 

 

 

 

 

 

  

  The time complexity is !(#) =																		= 	((_____) which is ______________ complexity. 

procedure bubblesort(.!, .", ⋯ , .#: real numbers with # ≥ 2) 
# ≔ the length of {.$} 
 for 4 ∶= 1 to # − 1                
       for 6 ∶= 1 to 	# − 4                
             if .& > .&%! then interchange .& and .&%!       
{.!, .", ⋯ , .# is in increasing order} 

4 = 1, 6 = 1 to ________ ←_______ operations 
	
	
	
	
	
J 4 = 2, 6 = 1 to ________ ←_______ operations 

⋮ ⋮ ⋮ 
4 = ____, 6 = 1 to ____ ←_______ operations 

procedure insertionsort(.!, .", ⋯ , .#: real numbers with # ≥ 2) 
# ≔ the length of {.$} 
 for 4 ∶= 2 to #                
       6 ≔ 1  
       while (.$ > .& and 4 > 6 )  
                 6 ≔ 6 + 1  
       < ≔ .$  
       for K ∶= 0 to 4 − 6 − 1                
             .$)( ≔ .$)()!  
       .& ≔ <        
{.!, .", ⋯ , .# is in increasing order} 

4 = 2, ." > .!, 2 > 1, 6 = ______ ←_______ operations 
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4 = 3,  
	
	
	
M ←_______ operations 

  
4 = 4,  

	
	
	
	
O ←_______ operations ⋮  

 
4 = #,  ←_______ operations 
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Both the bubble sort and the insertion sort have the worse case
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