	MAT2440, Classwork34, S	Spring2025
ID:_	Name:	
1.	Input (size n) \longrightarrow Find the number of operations $f(n)$	f(n) = O(qm) $measurement of f$ $f(n) = O(qm)$ $f(n) = O(qm)$ $f(n) = O(qm)$ $f(n) = O(qm)$
2.	Commonly Used Terminology for the Complexity of	Algorithms. Time complexity

Complexity	Terminology		
0(1)	<u>constaut</u> complexity		
$O(\log n)$	<u>logarithmic</u> complexity		
O(n)	<u>Linear</u> complexity		
$O(n \cdot \log n)$	<u>Lineavithmic</u> complexity		
$O(n^p), p > 0$	<u>Polynomia</u> complexity		
$O(b^n), b > 1$	Exponential complexity		
<i>O</i> (<i>n</i> !)	<u>Factoria</u> complexity		

3.

Problem Size	Bit Operations Used							
n	log n	n	n log n	n^2	2 ⁿ	<i>n</i> !		
10	3×10^{-11} s	$10^{-10} { m s}$	3×10^{-10} s	10 ⁻⁹ s	10 ⁻⁸ s	3×10^{-7} s		
10 ²	7×10^{-11} s	10 ⁻⁹ s	$7 \times 10^{-9} \text{ s}$	10 ⁻⁷ s	$4 \times 10^{11} \text{ yr}$	*		
10 ³	1.0×10^{-10} s	$10^{-8} s$	$1 \times 10^{-7} \text{ s}$	10^{-5} s	*	*		
104	1.3×10^{-10} s	$10^{-7} { m s}$	1×10^{-6} s	10 ⁻³ s	*	*		
10 ⁵	1.7×10^{-10} s	10^{-6} s	2×10^{-5} s	0.1 s	*	*		
106	2×10^{-10} s	$10^{-5} {\rm s}$	2×10^{-4} s	0.17 min	*	*		
eeded	ess -			- + ⁻	f more tha	-> more		

Time needed

The <u>Worst-Case</u> performance of an algorithm means the <u>largest</u> number of operations needed to solve the given problem using this algorithm on input of specified size. This worst-case analysis tells us how many <u>operations</u> an algorithm requires to guarantee that it will produce a solution.

5. The time complexity analysis of the linear search algorithm:

procedure linear_search(x: integer, a_1, a_2, \dots, a_n : distinct integers) $n \coloneqq \text{the length of } \{a_i\}$ $i \coloneqq 1$ while ($i \le n$ and $x \ne a_i$) $i \coloneqq i + 1$ if $i \le n$ then location $\coloneqq i$ else location $\coloneqq 0$ return location { location is the subscript of the term that equals x, or 0 if x is not found.}

(1) The number of operations considering the worst-case: \times is not, in the list.

while
$$(i \le n \text{ and } x \ne a_i)$$

 $i := i + 1$
if $i \le n$ then location := i
else location := 0
 $\leftarrow \underline{1}$ Comparison
 $\rightarrow \pm 1$

(2) The time complexity is $f(n) = 3ht = 0(\Lambda)$ which is (hear) complexity.

(3) What is the best-case complexity of this algorithm? Sal: best case: " $x = a_1$ " then the operations are: while loop $1 \le n$ and $x = a_1$ (2) comp. if (oop $1 \le n$ (1) comp. $f(n) = 3 = O(1) \leftarrow \text{ constant complexity}$. $\exists \text{ operations}$