MAT2440, Classwork2, Spring2025

ID:	Name:
1. Given two propositions p and q . Find p	$\vee q$ and $p \oplus q$
<i>p</i> : "A combo meal includes a salad wit	h dinner."
q: " A combo meal includes a soup with	h dinner."
$p \lor q$: A combo meal includes	a salad or a soup dinner.
p⊕q: <u>A combo meal includes</u>	a salad or a soup, but not both with
2. Definition of Conditional statement o	f two propositions : Let p and q be two propositions.
The <u>Conditional</u> statemate $p \rightarrow q$ "	is the proposition " <u>If p, then g</u> ." In the
conditional statement $p \rightarrow q, p$ is called	<u>hypothesis</u> or <u>premise</u> and q is called
conclusion or consequence	
A conditional statement is also called an	implication.

3. The truth table for the conditional statement $p \rightarrow q$:

p	\boldsymbol{q}	p ightarrow q
T	F	T
T	К	Ц
F	Ť	Ť
. 12	Ļ	T

The conditional statement $p \rightarrow q$ is **false** when p is <u>true</u> and q is <u>false</u>, and true otherwise. In fact, $p \rightarrow q$ is **true** when both p and q are <u>true</u> and when p is <u>false</u> (no matter what truth value q has).

4. Using the given conditional statement to understand the truth table. "If I am elected, then I will lower taxes" $T \rightarrow T$: T expected $F \rightarrow T$: T expected $F \rightarrow F$ $T \rightarrow F$ T break the pledge 5. A variety of terminology used to express $p \rightarrow q$:

Given two propositions p: "It is sunny." and q: "I wear sunglasses." And we have "If p, then q.": If it is sunny then I wear sunglasses. The following statements are the different ways to express $p \rightarrow q$: Group I. "If p, q.": If it is sunny, I wear sunglasses "p implies q.": It is sunny implies I wear sunglasses. "p only if q.": It is sunny only if I wear sunglasses. Group II. "*q* if *p*."; "*q* whenever *p*."; "*q* when *p*."; "*q* follows from *p*."; "*q* provided that *p*.": I wear <u>sunglasses</u> if (whenever, when, follows from, that) it is sunny "qualess p.": I Wear sunglasses unless it is NOT Sunny Group III. " p is (a) sufficient (condition) for q.": It is sunny is sufficient for I wear. (" sufficient" means if \underline{P} , then \underline{Q} is guaranteed). ("sufficient means n_{p} , ..., n_{p} , ..., n_{p} , ..., q is a necessary (condition) for p.": <u>I wear sunclosses</u> is necessary for it. is Sunny ("necessary" means if <u>not</u> $\stackrel{0}{\rightarrow}$, then <u>not</u> $\stackrel{0}{\rightarrow}$, that is, $\neg q \rightarrow \neg p$). "only if " and "necessary" are related to the contrapositive proposition of p->2

6. The Converse, Contrapositive, and Inverse of a conditional statement p → q:
Converse: The proposition q → p is called <u>CONVERSE</u> of p → q.
Contraposition: The proposition ¬q → ¬p is called <u>CONVERSE</u> of p → q.
Inverse: The proposition ¬p → ¬q is called <u>Inverse</u> of p → q.