ID:

Name:

1. Algorithms of **Sorting Problems.**

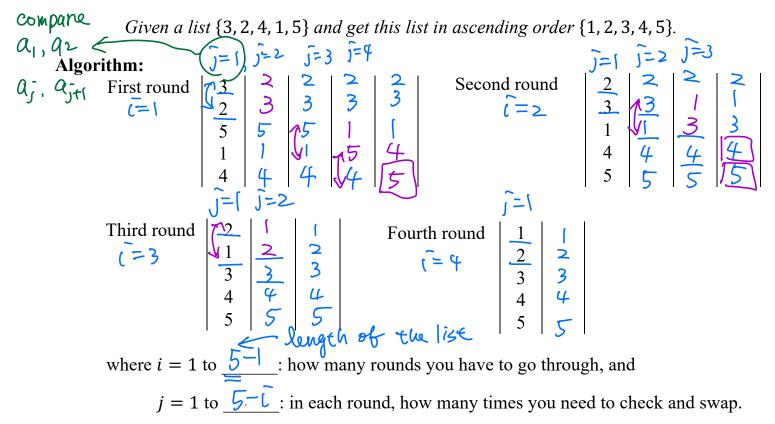
Problem: Given a sequence. Then sort the elements in ascending (or descending) order.

Algorithms: (1) The Bubble Sort. (2) The Insertion Sort.

For example: input is $\{3, 2, 4, 1, 5\}$ and the output of ascending order is $\{/, 2, 3, 4, 5\}$.

2. Sorting algorithm I: Algorithm and Pseudocode of the **Bubble Sort**.

The smaller elements "bubble" to the top as they are <u>inturchange</u> with larger elements. Here we use an example to explain the algorithm:



Pseudocode:

procedure *bubblesort*(a_1, a_2, \dots, a_n : real numbers with $n \ge 2$) $n := \text{the} \underline{\qquad on fh}_{a_i}$ of $\{a_i\}$ **for** $i := \underline{\qquad to \ N-l}_{i=1}$ **for** $j := \underline{\qquad to \ N-c}_{i=1}$ **if** $a_j > a_{j+1}$ **then** interchange a_j and a_{j+1} $\{a_1, a_2, \dots, a_n \text{ is in increasing order}\}$ 3. Sorting algorithm II: Algorithm and Pseudocode of the Insertion Sort.

Insertion sort compares the i^{th} element to its previous i - 1 sorted elements and <u>insert</u> the i^{th} element in the right location among the previous i - 1 sorted ones.

Here we use the same example to explain the algorithm:

Given a list $\{3, 2, 5, 1, 4\}$ and get this list in ascending order $\{1, 2, 3, 4, 5\}$.

Algorithm:

First Round:
$$1 = 2$$
 2^{nd} element "2", $3, 2, 5, 1, 4$ 23514
Second Round: 3^{rd} element "5", $2, 3, 5, 1, 4$ 23514
Third Round: 4^{th} element "1", $2, 3, 5, 1, 4$ 2354
Fourth Round: 5^{th} element "4", $1, 2, 3, 5, 4$ 12345
In " parts, we do (1) compare a_i to a_j where $1 \le j \le 6$ until $a_i \le a_j$, then (2) insert a_i to the position of a_j .

Pseudocode:

procedure insertionsort(
$$a_1, a_2, \dots, a_n$$
: real numbers with $n \ge 2$)
 $n := \text{the } \underbrace{ 0.09 \text{ fh}}_{n = 1} \text{ of } \{a_i\} \text{ for } i := \underline{2} \text{ to } \underline{N} \text{ of } \{a_i\} \text{ prock } i \in \mathbb{N} \text{ element}$
 $j := \underline{1}$
while $(a_i > a_j \text{ and } i > j)$
 $j := j + 1$
 $m := a_i$
for $k := \underline{0} \text{ to } \underline{(-j - [}])$
 $a_{i-k} := a_{i-k-1}$
 $a_j := m$
 $\{a_1, a_2, \dots, a_n \text{ is in increasing order}\}$
 $m := a_i \text{ substantial order}$