MAT2440, Classwork28, Spring2025

ID: Name: 1. Searching algorithm II: Algorithm and Pseudocode of the Binary Search. In this algorithm, the list $\{a_i\}$ must be in **ascending** order, that is, $a_1 < a_2 < a_3 < \cdots < a_n$. Here we use an example to explain the algorithm. Given a list $\{a_i\}$ with 16 elements where $\{a_i\} =$ $\{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\} = \{1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 22\}$ Algorithm (for searching 'x = 15' and output the location): (1) Split this list in half: $\{a_1, \dots, a_8\}$ and $\{a_9, \dots, a_{16}\}$, $\mathcal{A}_g = \{0, \dots, a_{16}\}$, $\mathcal{A}_g = \{0, \dots, a_{16}\}$ **if** $True(x > a_8)$ **then** $\{a_9, \dots, a_{16}\}$ if Fales($x > a_8$) then $\{a_1, \dots, a_8\}$ (2) Split the list in half: $\{a_9, \dots, a_{12}\}$ and $\{a_{13}, \dots, a_{16}\}$, **if** True($x > a_{12}$) **then** { a_{13}, \dots, a_{16} } (3) Split the list in half: $\{a_9, a_{10}\}$ and $\{a_{11}, a_{12}\}$, **if** Fales($x > a_{12}$) **then** { a_9, \dots, a_{12} } if $True(x > a_{10})$ then $\{a_{11}, a_{12}\}$ if Fales($x > a_{10}$) then $\{a_9, a_{10}\}$ $Q_{\omega}=13$ (T) (T) (4) Split the list in half: $\{a_{11}\}$ and $\{a_{12}\}$, if $True(x > a_{11})$ then $\{a_{12}\}$ **if** Fales($x > a_{11}$) **then** { a_{11} } $q_{11}=15, 15 > 15 (F)$ if True $(x - a_{11})$ then location = [((5) Comparing x and a_{11} , if False $(x \underline{=} a_{11})$ then location=_____ 15 is NOT in the list

Pseudocode:

procedure *binary_search*(*x*: integer, a_1, a_2, \dots, a_n : distinct integers) $n \coloneqq \text{the } _\underline{ewch} \text{ of } \{a_i\}$ $i \coloneqq ___$ (which is $_\underline{eft}$ end location) $j \coloneqq ___$ (which is \underline{veft} end location) **while** $(i \le j)$ $m \coloneqq \begin{bmatrix} i+j\\2 \end{bmatrix}$ (which is the locate the $\underline{midd}[e]$ of the sequence) $if x > a_m$ then $i \coloneqq \underline{m+1}$ $else j \coloneqq \underline{m}$ $if x = \underline{O_i}$ then *location* $\coloneqq \underline{O}$ return $\underline{bcation} \{ \text{ location} \text{ is the subscript of the term that equals } x, \text{ or } 0 \text{ if } x \text{ is not found.} \}$

- 6. How does this pseudocode work with {1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 22} and searching for x = 15? How many elements do we have * · do Nothilu Initialization: $n = \underline{16}$, $i = \underline{1}$, and $j = \underline{16}$. round $x > a_m (T/F)$ i = m + 1i < j (T/F)= mm a_m (=1,)=(6 Itie =8 15 > 10 10 =9 (1=16) (T)2 1-1=(6 <u>647</u> 16 = 12 15>16 $(\bar{c}=q)$ 3 9112 13 210 11+1-1 4 =1 15 (c) = 0(=(1,)=1 $(x = a_i)$ is <u>true</u> implies location = <u>[</u>] 15 = 15Return: (ocation = 1)which is "¿"
 - 7. How does this pseudocode work with {2, 3, 8, 9} and searching for x = 6?

Initialization: $n = \underline{4}$, $i = \underline{1}$, and $j = \underline{4}$. $x > a_m (T/F)$ i = m + 1round i < j (T/F) a_m = mт C = 1, F = 4114 =2 1 З =4 $\frac{2}{3}$ $\frac{2+4}{5} = 3$ 8 <u>≻</u>8 (F)72U (=-3 \square implies *location* = \bigcirc . $(x = a_i)$ is $6 = 0_3 = 8$ (F) Return: tocation = 0 < 6 is NOT in the list.