MAT2440, Classwork27, Spring2025

ID:

Name:

1. Algorithms of Searching Problems.

Problem: Locate an element x in a list of <u>distinct elements</u> a_1, a_2, \dots, a_n , or determine that it is **not** in the list. The **solution** to this search problem is that **location** of the term in the list that equals x (that is, \underline{c} is the solution if $x = a_i$) and is \underline{O} if x is not in the list.

Algorithms: (1) The Linear Search or Sequential Search. (2) The Binary Search.

2. An example of searching problem: Given a list $\{-1, 2, 5, 6, 3, -5\}$.

We have $a_1 = \underline{-}, a_2 = \underline{-}, a_3 = \underline{-}, a_4 = \underline{-}, a_5 = \underline{-}, a_6 = \underline{-}$, and $a_6 = \underline{-}$.

- (1) To find the location of "3": the algorithm will return <u>5</u>. ("3" is the <u>5</u>th element) (2) To find the location of "1": the algorithm will return <u>0</u>. ("1" is <u>1/6</u> in the list)
- 3. Searching algorithm: Algorithm and Pseudocode of the Linear Search.

Algorithm:

(1) Comparing x and a_1 ,	if True $(x \ge a_1)$ then location=;
	if False $(x = a_1)$ then location= 0 . Continue
(2) Comparing x and a_2 ,	if True $(x = a_2)$ then location = 2;
	if False $(x = a_2)$ then location = \bigcirc .
(3) Continue until $x = a_i$,	if True $(x = a_i)$ then location = \hat{c} .
(4) If no matching is found,	then return location = \bigcirc .
	X is NOT in the list

Pseudocode:

procedure linear_search(x: integer, a_1, a_2, \dots, a_n : distinct integers) $n \coloneqq \text{the } \underline{|e_Neth|} \text{ of } \{a_i\}$ $i \coloneqq \underline{|}$ while $(i \leq \underline{h}]$ and $x \equiv a_i$) $i \coloneqq i + 1$ if $i \leq \underline{h}$ then location $\coloneqq \underline{L}$ else location $\coloneqq \underline{O}$ return $\underline{|ocation|} \{ \text{ location is the subscript of the term that equals } x, \text{ or } 0 \text{ if } x \text{ is not found.} \}$

- 4. An example of linear search: Let the sequence be {3, 1, 5, 6, 4}.
 - (a) Search for 6.

