MAT2440, Classwork24, Spring2025

ID:	Name:
1. The special Sequence with explicit formula: Arithmetic Sequences	
An <u><u>arithmetic</u> sequence $\{a_n\}$ is a sequence of the form $a_n = a_1 + (n-1)d$:</u>	
$a_1 = \mathcal{Q}_1, a_2 = \mathcal{Q}_1 + \mathcal{Q}_1$	$a_3 = Q_1 + 2d, \dots, a_k = Q_1 + (k-1)d\dots,$
where the \sqrt{a} term a_1 and the a_2	common $difference d$ are real numbers.
(firzt)	

2. List the first five terms a_1, a_2, \dots, a_5 of the arithmetic sequence $\{a_n\}$ and find the common

difference d of the sequence. (a) $a_n = 3 + (n-1)(-4)$. (b) $a_n = -1 + 4n$. (a) $\alpha_1 = 3 + (1-1) \cdot (-4) = 3$ $\alpha_2 = 3 + (2-1) \cdot (-4) = -12$ $\alpha_3 = 3 + (3-1) \cdot (-4) = -52^{-4}$ $\alpha_4 = 3 + (4-1) \cdot (-4) = -92^{-4}$ $\alpha_5 = 3 + (5-1) \cdot (-4) = -92^{-4}$ (b) $\alpha_1 = -(+4+1) = 3$ $\alpha_2 = -(+4+2) = -92^{-4}$ $\alpha_3 = -(+4+2) = -12^{-4}$ $\alpha_4 = -(+4+4) = -15^{-4} + 44^{-4}$ $\alpha_5 = -(+4+3) = -12^{-4} + 44^{-4}$ $\alpha_5 = -(+4+3) = -12^{-4} + 44^{-4}$

- 3. . The special Sequence with explicit formula: Geometric Sequences
 - An <u>geometric</u> sequence $\{a_n\}$ is a sequence of the form $a_n = a_1 r^{n-1}$: $a_1 = \underline{q_1}, a_2 = \underline{q_1}r, a_3 = \underline{q_1}r^2, \dots, a_k = \underline{q_1}r^{k-1}, \dots,$ where the <u>initial</u> term a_1 and the common <u>ratio</u>, r are real numbers.
- 4. List the first five terms a_1, a_2, \dots, a_5 of the geometric sequence $\{a_n\}$ and find the common

ratio r of the sequence. (a)
$$a_n = (-1)^n$$
. (b) $a_n = \left(-\frac{1}{2}\right)^{n-1}$.
(a) $\alpha_1 = (-1)^1 = -1$
 $\alpha_2 = (-1)^2 = 1$
 $\alpha_3 = (-1)^3 = -1$
 $\alpha_4 = (-1)^4 = 1$
 $\alpha_5 = (-1)^5 = -1$
 $\beta_5 = (-1)^5 = -1$
 $\beta_5 = (-\frac{1}{5})^{-1} = -\frac{1}{2}$
 $\alpha_5 = (-\frac{1}{5})^{-1} = -\frac{1}{2}$
 $\alpha_5 = (-\frac{1}{5})^{-1} = -\frac{1}{2}$
 $\alpha_5 = (-\frac{1}{5})^{-1} = -\frac{1}{5}$
 $\alpha_5 = (-\frac{1}{5})^{-1} = -\frac{1}{5}$
 $\alpha_5 = (-\frac{1}{5})^{-1} = -\frac{1}{5}$

5. Define a Sequence by **Recursive Relations**:

Another popular method to define a sequence is to provide one or more <u>initia</u> terms together with a <u>Yecurgive</u> rule for determining subsequent terms from those that precede them.

6. Let $\{a_n\}$ be a sequence that satisfies the **initial term** $a_0 = 2$ and the **recurrence relation**

$$a_{n} = a_{n-1} + 3 \text{ for } n = 1, 2, 3, \dots \implies a_{n} - a_{n+1} = 3$$
What are $a_{1}, a_{2}, \text{ and } a_{3}$? $a_{0} = 2 \iff \text{initial furm}$
 $a_{1} = a_{1-1} + 3 = a_{0} + 3 = 2 + 3 = 5$
 $a_{2} = a_{2+1} + 3 = a_{1} + 3 = 5 + 3 = 8$
 $a_{3} = a_{3+1} + 3 = a_{2} + 3 = 5 + 3 = 8$
 $a_{3} = a_{3+1} + 3 = a_{2} + 3 = 8 + 3 = 1$
 $a_{n} = \frac{1}{3}a_{n-1} \text{ for } n = 1, 2, 3, \dots \implies a_{n} + a_{n-1} = \frac{1}{3}$
What are $a_{1}, a_{2}, \text{ and } a_{3}$? $a_{0} = 3$
 $a_{1} = \frac{1}{3}a_{1-1} = \frac{1}{3}a_{0} = \frac{1}{3} \cdot 3 = 1$
 $a_{2} = \frac{1}{3}a_{2-1} = \frac{1}{3}a_{1} = \frac{1}{3} \cdot 1 = \frac{1}{3}$
 $a_{3} = \frac{1}{3}a_{3-1} = \frac{1}{3}a_{2} = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{4}$
 $a_{3} = \frac{1}{3}a_{3-1} = \frac{1}{3}a_{2} = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{4}$

8. (*Fibonacci sequence*) Let $\{f_n\}$ be a sequence that satisfies the **initial term** $f_0 = 1, f_1 = 1,$

and recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$
 for $n = 2, 3, 4, \cdots$.

What are the first five terms?

at are the first five terms?

$$f_0 = 1$$
 initial terms $[1, 1, 2, 3, 5, 8, 13, 2], \dots]$
 $f_1 = 1$
 $f_2 = f_{2-1} + f_{2-2} = f_1 + f_0 = (+1) = 2$
 $f_3 = f_2 + f_1 + f_0 = 2 + 1 = 3$
 $f_4 = f_3 + f_2 = 3 + 2 = 5$

Explicit formula (also called a closed formula) of *Fibonacci sequence*:

$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right] , \quad N=0,1,2,\cdots$$