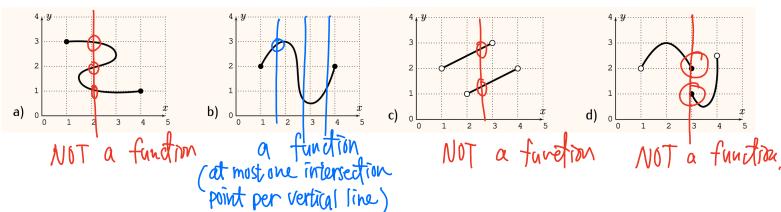
MAT2440, Classwork21, Spring2025

ID:	Name:
1. The definition of a Function:	
Let A and B be nonempty se	ts. A $function f$ from A to B is an assignment of exactly
$\bigcirc \mathcal{W}$ element of B to each	ts. A <u>function</u> f from A to B is an assignment of <u>exactly</u> the element of A , denoted by $f: A \to B$ which is read as f
maps A to B . Then we say that	at A is the $\underline{\text{codomain}}$ of f and B is the $\underline{\text{codomain}}$ of f.
2. If $f(a) = b$, we say that b is	the $\frac{\text{image}}{\text{of } a}$ of a and the $\frac{\text{range}}{\text{range}}$ of f is the set of all range $\frac{\text{codomain}}{\text{once between range and codomain}}$
images of elements of A .	range codomain
what is the differe	nce between range and codomain
3. Suppose that each student in	2440 is assigned a letter grade from the set $G = \{A, B, C, D, F\}$.
And suppose that grades are	A for Adams, C for Chou, B for Goodman, A for Rod, and F for
Stevens. Let $S = \{Adams, C\}$	hou, Goodman, Rod, Stevens} be the set of the students.
(a) Is $f: S \to G$ a function?	(b) What is the domain, range, and codomain of f ?
(c) Is $g: G \to S$ a function?	
Adams $\rightarrow A$	domain:= 5
Chou B	$rango:=\{A,B,C,F\}$
Goodman > C	CAUS TARCADIF
Rod D	$CCJ_A \longrightarrow F$ Adams
Stevens -> F	
	B
Yes, f is a function	C Goodman D Rod
	F >> stevens
	NO, g is NOT a function

4. Use **Vertical Line Test** to determine which of the following are the graphs of functions.



5. The definition of a One-to-One Function:

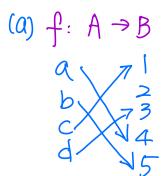
A function f is said to be $\underline{000-10-000}$, or an $\underline{100000}$, if and only if f(a)=f(b) implies that a = b for all a and b in the domain of f and we say f is **injective**. Hence, we have $\forall a \forall b (f(a) = f(b) \rightarrow \underline{a = b}) \text{ or } \forall a \forall b (a \neq b \rightarrow \underline{f(b)})$

One-to-one function means different inputs will produce different outputs.

6. Let
$$A = \{a, b, c, d\}$$
 and $B = \{1, 2, 3, 4, 5\}$.

(a) Let
$$f: A \to B$$
 with $f(a) = 4$, $f(b) = 5$, $f(c) = 1$, and $f(d) = 3$. Is f one-to-one?

(b) Let
$$g: A \to B$$
 with $g(a) = 4$, $g(b) = 5$, $g(c) = 1$, and $g(d) = 1$. Is g one-to-one?



(b) g: Yes, f is the-to-one

NO; g is NOT oke-to-one 3 (an output has two

7. Is
$$f(x) = x^2$$
 a one-to-one function?

Is
$$a \neq b \rightarrow f(a) \neq f(b)$$
 for all real number?

Sol: Here is a counterexample when a=1, b=-1 ($a \neq b$) (Q=2, b=-2) $f(a) = f(1) = 1^2 = 1$

$$f(b) = f(-1) = (-1)^2 = f(a) = f(b)$$

Therefore, it implies that fix=x2 is NOT one—to-one

To prove f is NOT one—to-one:

need to provide a counterexample to show

a+b, but f(a) = f(b)

· To prove f is one-to-one.

Need to show ta to (f(a)=f(b) -> a=b)

For example, to show f(x) = 2x+1 is one to one, we assume arbitrary. f(a) = f(b) which implies 2a+1 = 2b+1 for a.b in the domain of f(a) = f(b) which implies 2a+1 = 2b+1. Then, we have 2a+1 = 2b+1. $\Rightarrow 2a = 2b$. $\Rightarrow a=b$ for arbitrary a,b in domain of f(a) = f(b). Therefore, Since a,b are arbitrary and f(a) = f(b) implies a=b,

then f(x) = 2x+1 is one-to-one