MAT2440, Classwork1, Spring2025

ID: Name:					
1. Definition of a Proposition: Basic building blocks	of 10	qic			
A $\underline{\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}D$					
fact) that is either <u>true</u> or $fase$, but not both.					
2. Circle the following sentence if it is a proposition: false statement True statement False statement (a. 2 + 3 = 4. (b. 2 + 1 = 3. (c) The capital of New York State is New York City.					
A. What time it is? A Read this carefully. $x + 2 = 3$.					
3. Compound Propositions and Logical Operators:					
Many mathematical statements are constructed by combining one or more propositions. New					
propositions, called <u>Compound</u> propositions, are formed from existing propositions					
using logical Operators.	~p. p				
4. Definition of Negation of a proposition:					
Let p be a proposition. The <u>negation</u> of p, denoted by $\frac{1}{p}$ (which is read " not p") is					
the statement "It is \underline{NOT} the case that p".					
5. The Truth Table for the negation of a proposition <i>p</i> :		¬ <i>p</i>			
	Т	E			
6. Find the negation of the given propositions:	F	_T			
a. The capital of New York State is New York City.					
P The capital of New York State is New York City. 7p: The Capital of NY state					
b. 7 is great than or equal to 6 (or $7 \ge 6$) p is NOT New York Light					
7p: 7<6					

7. Definition of **Conjunction** of two propositions: Let p and q be two propositions.

The <u>Conjunction</u> of p and q, denoted by $\underline{P \wedge Q}$, is the proposition "<u>P and Q</u>".

8. The truth table for the conjunction of propositions p and q:

2	p	q	$\boldsymbol{p} \wedge \boldsymbol{q}$
2=4 1	Т	Т	Т
possible	Т	F-	Ц
Combination	F	Т	Ļμ
	F	F	Ĩ

The conjunction $p \wedge q$ is **true** when both p and q are <u>true</u> and is <u>face</u> otherwise. 9. Given two propositions p and q. Find $p \wedge q$.

p: "The capital of New York State is Albany."

q: "New York City is the largest city in New York State."

- prq: The captial of New York State is Albany and New York City. is the largest city in NY state.
- 10. Definition of **Disjunction** of two propositions: Let p and q be two propositions.
 - The <u>disjunction</u> of p and q, denoted by $p \lor q$, is the proposition "<u>p or q</u>". Disjunction corresponds to <u>inclusion</u> Or.
- 11. Definition of **Exclusion Or** of two propositions: Let p and q be two propositions.

The <u>exclusion</u> of p and q, denoted by $p \oplus q$ (or $p \times 0R + q$)

12. The truth table for the disjunction of propositions p and q:

p	q	$p \lor q$	$p\oplus q$
Ч	Т	Ч	Ц
T	Ĩ	Т	T
ŢŢ	T.		Ч
Ĩ	Г	F	F

The **Disjunction** $p \lor q$ is false when both p and q are <u>false</u> and is <u>true</u> otherwise. The **Exclusion** Or $p \oplus q$ is true when one of p and q is <u>true</u> and is <u>false</u> otherwise.