ID:

Name:

- 1. The Second Method: A Proof by Contradiction
- (a) To prove a statement p is true, we first find a <u>contradition</u> q such that $\neg p \rightarrow q$ is <u>true</u>. Since q is false and $\neg p \rightarrow q$ is true, it concludes that $\neg p$ is <u>false</u> which implies p is <u>true</u>.
- (b) To prove a statement $p \rightarrow q$ is true, we first *assume* p and $\neg q$ are <u>true</u>. Then using $\neg q$ shows $\neg p$ is <u>true</u>. Because p and $\neg p$ are both <u>true</u>, we have a <u>contradition</u>. It implies the *assumption* " $\neg q$ is true" is wrong which means q is <u>true</u>.
- 2. Give a contradiction proof of the theorem "If n^2 is an odd integer, then n is odd." Assume n^2 is odd and n is even $(\neg Q(ns))$ Then N = 2k which implies $n^2 = (2k)^2 = 4k^2$ and it is even Here we get a contradicion since n^2 cannot both even and odd. Therefore, n is odd.
- 3. Rational and Irrational numbers:

The real number r is <u>rational</u> if there exist integers a and b with $b \neq 0$ such that

$$r = \frac{a}{b}.$$

A real number that is not rational is called **irrational**.

4. Prove that a product of a non-zero rational number and an irrational number and an irrational is rational Assume "the product of a victional number and an irrational is rational" $a \cdot i = a$ (a, b, c, d are non-zero integers) i = non-zero irrational Then $i = a \cdot b = cb$ \Rightarrow "i" is a rational number Here is a contradition that "i" is both rational and irrational which implies the assumption is Wrong, and a product of a non-zero rational number and an irrational one a product of a non-zero rational number and an irrational one

5. The Third Method: A Proof by Contraposition

Proofs by <u>Contrapsition</u> make use of the fact that the conditional statement $p \rightarrow q$ is equivalent to its contrapositive $\underline{\neg q} \rightarrow \underline{\neg P}$. This means that $p \rightarrow q$ can be proved by showing $\neg q \rightarrow \neg p$ is <u>true</u>.

6. Give a proof by Contraposition of the theorem "If n^2 is an odd integer, then n is odd." In this theorem, p is " n^2 is odd" and q is "n is odd" Assume 7q: n is Not odd \Rightarrow n is even Let n = 2k, then $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$ Which implies n^2 is an even number and this is the 7p proposition. We proved that $7q \Rightarrow 7p$. implies $p \Rightarrow q$

7. Mistakes in Proofs: An Example

What is wrong with this famous supposed "proof" that 1 = 2?

Proof: We use these steps, where *a* and *b* are two equal positive integers.

Step	Reason
(1). $a = b$	Given
(2). $a^2 = ab$	Multiply both sides of (1) by a
(3). $a^2 - b^2 = ab - b^2$	Subtract b^2 from both sides of (2)
(4). (a - b)(a + b) = b(a - b) (5). $a + b = b$	Factor both sides of (3)
$\checkmark(5). a + b = b$	Divide both sides of (4) by $a - b$
(6). $2b = b$	Replace a by b in (5) since $a = b$
(7). 2 = 1	Divide both sides of (6) by b
since a=b ->	a-b=0, then we can not cancel
(a-b) on both	sides in (4)