MAT?2440, Classwork14, Spring2025
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1. Universal instantiation: It is the rule of inference that given the premise VxP (x), and it
concludes that P(c) is _TYue. , Where c is a particular member of the domain.

2. Universal generalization: It is the rule of inference that given the premise P(c) is true for all
elements ¢ in the domain, and it concludes that VxP(x) is _Lyue- .

3. Existential instantiation: It is the rule of inference that if we know 3xP(x) is true, it
concludes that there is an element ¢ in the domain for which P(c) is _fyyg. .

4. Existential generalization: It is the rule of inference that when a particular element ¢ with

P(c) true is known, it concludes that 3xP(x) is _ 1y k2. .

5. The Rules of Inference for Quantified Statements:
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6. Show that the premises ‘‘Everyone in Mat2440 has taken a course in CS’’ and ‘“Marla is a

student in Mat2440°° implies the conclusion ‘‘Marla has taken a course in CS.”’
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1. Introduction of Proofs:

A D{?O]ﬁ is a valid argument that establishes the truth of a mathematical statement.
J

A 'tke,ofeaW\ is a statement that can be shown to be true. We demonstrate that a theorem

is TY1u2_ with a proof. The statement used in a proof can include axioms, the premises

of the theorem, and previously proven theorems.

2. The First Method: A Direct Proof

A df@d‘ Pnﬁf' shows that a conditional statement p — q is true by showing that

if ‘2 is true, then % must also be true. The direct proofs are quite straightforward,

but sometimes require particular insights and can be quite tricky.

3. Even or Odd Integers:
The integer n is even if there exists an integer k such that n = 2-l< .

The integer n is odd if there exists an integer k such thatn = _2 kT |

4. Give a direct proof of the theorem *‘If nn is an odd integer, then n? is odd.”
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5. Give a direct proof of the theorem “‘If n? is an odd integer, then n is odd.”’
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