MAT2440, Classwork14, Spring2025

ID:

Name:

1. Universal instantiation: It is the rule of inference that given the premise $\forall x P(x)$, and it concludes that P(c) is <u>true</u>, where c is a particular member of the domain.

2. Universal generalization: It is the rule of inference that given the premise P(c) is true for all elements c in the domain, and it concludes that $\forall x P(x)$ is \underline{true} .

3. Existential instantiation: It is the rule of inference that if we know $\exists x P(x)$ is true, it concludes that there is an element *c* in the domain for which P(c) is <u>true</u>.

4. Existential generalization: It is the rule of inference that when a particular element c with P(c) true is known, it concludes that $\exists x P(x)$ is $\pm \gamma \omega$.

Name	Rule of Inference
Universal instantiation	$\forall xP(x)$, P(c), c is in the domain of x
Universal generalization	$\frac{P(c) \text{ for an arbitrary } c}{1 + \forall X P(X), X \text{ includes all } c}$
Existential instantiation	======================================
Existential generalization	$\frac{P(c) \text{ for some element } c}{(1 + 2 \times P(X)), \times \text{ includes a element}}$

5. The Rules of Inference for Quantified Statements:

6. Show that the premises "Everyone in Mat2440 has taken a course in CS" and "Marla is a

student in Mat2440" implies the conclusion "Marla has taken a course in CS."

Sich: χ is in Matt2440, C(x): χ has taken a CS course $\exists \forall x (5\infty) \rightarrow C(x)$) premise #I $\exists \forall y$ premise #2. $S(Marla) \rightarrow C(Marla)$ premise #3 \bigcirc We need this premise to get the Scy: X is in Mat 2440 5 (Marla) premise #2 Conclusion . C (Marla) conclusion we mait

1. Introduction of Proofs:

A \underline{prof} is a valid argument that establishes the truth of a mathematical statement. A <u>theorem</u> is a statement that can be shown to be true. We demonstrate that a theorem is <u>true</u> with a **proof**. The statement used in a proof can include axioms, the premises of the theorem, and previously proven theorems.

2. The First Method: A Direct Proof

A <u>diffect</u> prof_ shows that a conditional statement $p \rightarrow q$ is true by showing that if <u>p</u> is true, then <u>g</u> must also be true. The direct proofs are quite straightforward, but sometimes require **particular insights** and can be quite **tricky**.

3. Even or Odd Integers:

The integer *n* is *even* if there exists an integer *k* such that $n = \underline{2 \cdot k}$. The integer *n* is *odd* if there exists an integer *k* such that $n = \underline{2 \cdot k + l}$.

4. Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

Proof:
$$P(n)$$
 is "n is odd", $Q(n)$: h^2 is odd.
Let $N = 2k \pm i$ (assume n is odd) $\forall n (P(n) \rightarrow Q(n))$
then $h^2 = (2k \pm i)(2k \pm i)$
 $= 4k^2 \pm 2k \pm i$
 $= 2(2k^2 \pm k \pm k) \pm i$
Which means h^2 is odd.

5. Give a direct proof of the theorem "If n^2 is an odd integer, then n is odd." $(n) \rightarrow P(n)$

Let $N^2 = 2Ft$ then $N = \sqrt{2Ft}$.