ID:	Name:
1. Give a p	proof by contraposition of the theorem "If $\underline{n^2}$ is an even integer, then \underline{n} is even."
To Show	'p implies q" by 79 implies 7p" (the contrapostrion)
we as	same n is not even > n is odd.
Since N	n is odd. We have $N=2k+1$ (k is an integer).
Then	$N^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1$
	which is an odd integer. (7p)
We show '	if n is odd, then no is odd" which proves
C1	if n² is even, then n is even" is true
\	

2. Give a proof by contradiction of the theorem "If n^2 is an even integer, then n is even."

To show " $p \Rightarrow q''$ is true by contradiction

We have p is true and assume 7q is true which means n^2 is even and n is odd

If n is odd, we let n=2k+1 and we have $n^2=(2k+1)=4k^2+4k+1=2(2k^2+2k)+1$ Which is an odd integer.

However, based on the given condition, no is even and this makes "no is odd" a contradiction

which came from the assumption n is odd

Therefore, this assumption "n is odd" is false and

n should be even.