MAT1372, Classwork8, Fall2025

3 2	Conditional Probe	ability (Ca	onti)
J. 4	Conamonal From	ibility (Co	mu.,

6. (a)	Write out the following statement in conditional probability notation: "The probability the	at the ML
	prediction was correct, if the photo was about fashion" and find the probability.	

P(ML pre-fashion given truth is fashion) =
$$\frac{197}{309}$$
 (b) Determine the probability that the algorithm is incorrect (if) t is known the photo is about fashion.

P(ML pre-not give truth is fashion) =
$$\frac{112}{309}$$

(c) Compute
$$P(\text{mach_learn is pred_fashion} | \text{truth is fashion}) + P(\text{mach_learn is pred_not} | \text{truth is fashion}).$$

$$\frac{190}{309} + \frac{112}{309} = \frac{309}{309} = 1$$

Let A1, A2, ", Ax represent all the disjoint outcomes for a variable, Then if B is an event, possibly for another variable, we have

$$P(A_1|B) + P(A_2|B) + m + P(A_k|B) = 1$$

The rule for complements holds $P(A|B) = 1 - P(A^c|B)$

8. **Independence** considerations in conditional probability

Let X and Y represent the outcomes of rolling two dice.

(a) What is the probability that the first die, X, is 1? $(X = 1) = \frac{1}{6}$ $(X = 1) = \frac{1}{6}$

(b) What is the probability that both X and Y are 1?
$$\bigvee$$
 (X=1 and Y=1) = $\frac{1}{2}$

(b) What is the probability that both X and Y are 1?
$$P(X=1) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

(c) Use the formula for conditional probability to compute $P(Y = 1 \mid X = 1)$.

(d) What is
$$P(Y = 1)$$
? Is this different from the answer from part (c)? Explain.

(d) What is
$$P(Y = 1)$$
? Is this different from the answer from part (c)? Explain.

(C) $P(Y = 1 \mid X = 1) = \frac{P(Y = 1) \cdot P(X = 1)}{P(X = 1)} = \frac{P(Y = 1) \cdot P(X = 1)}{P(X = 1)} = \frac{P(Y = 1)}{P(X = 1)$

10. The smallpox data set provides a sample of 6,224 individuals and each case represents one person with two variables: inoculated (yes or no) and result (lived or died).

Suppose we are given only two pieces of information: 96.08% of residents were not inoculated, and 85.88% of the residents who were not inoculated ended up surviving. How could we compute the probability that a

