MAT1372, Classwork6, Fall2025

3.1 Defining Probability

1. PROBABILITY:

The probability of an outcome is the proportion of times the outcome would occur if we observed the random process an infinite number 2. A "die", the singular of dice, is a cube with six faces numbered 1, 2, 3, 4, 5, and 6. What is the chance of

getting 1 when rolling a die?

If the die is fair, then the chance of 1 is as good as the chance of the other numbers

P(rolling a 1) = P(1) = =

3. LAW OF LARGE NUMBERS:

As more observations are collected, the proportion Pn of occurrences with a particular outcome converges to the probability P of that outcome.

Figure 3.1: The fraction of die rolls that are 1 at each stage in a simulation. The

4. DISJOINT:

Two outcomes are called disjoint or mutally exclusive if they cannot both happen

5. (a) What is the probability of rolling a 1, or 3? (b) What is the probability of rolling a 1, 2, 3, 4, 5, or 6?

(a) $P(10r3) = P(1)tP(3) = \frac{2}{6}t = \frac{2}{6}$

(b)
$$p(1,2,3,4,5,0,6) = p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = \frac{6}{6} = 1$$

6. ADDITION RULE OF DISJOINT OUTCOMES:
If A, and Az represent 2 disjoint outcomes, then the probability that One of them occurs is given by P(AI orAz) = P(AI) +P(Az)

7. We are interested in the probability of rolling a 1, 4, or 5. (a) Explain why the outcomes 1, 4, and 5 are disjoint. (b) Apply the Addition Rule for disjoint outcomes to determine P (1 or 4 or 5).

(a) 1, 4, and 5 cannot happen at the same time

(b)
$$p(1 \text{ or } 4 \text{ or } 5) = p(1) + p(4) + p(5) = \frac{3}{6} = \frac{1}{6}$$

8. EVENT:

An event means a set or collection of outcome is considered For example, if event A represents the event where a die roll results in 1 or 2, A= 21,23

9. (a) Are events B and D disjoint? (b) Are events A and D disjoint?
$A=\{1,2\}$ $D=\{2,3\}$
$B = \frac{3}{4}, \frac{1}{5}$ (a) Yes, B & D are disjoint (b) A & D are Not disjoint
10. If you have a regular deck of 52 cards. (a) What is the probability that a randomly selected card is a diamond? (b) 2. 3. 4. 5. 6. 7. 8. 9. 10. J. Q. K. A.
What is the probability that a randomly selected card is a face card? What is the probability that a randomly selected card is a face $ \begin{array}{cccccccccccccccccccccccccccccccccc$
$(\alpha) P() = \frac{13}{52} = \frac{1}{4}$ Figure 3.3: Representations of the 52 unique cards in a deck.
(b) $P(fac) = \frac{4x^3}{5} = \frac{12}{5}$
11. Let A represent the event that a randomly selected card is a diamond and B represent the event that it is a face card. How do we compute $P(A \text{ or } B)$?
$P(4) + P(face) - P(4) \text{ and face}$ $= \frac{13}{52} + \frac{12}{52} - \frac{3}{52} = \frac{22}{52}$
12. GENERAL ADDITION RULE: A and B are any events (disjoint or not), then the prohability that
act least one of them will occur is p(AorB) = p(A)+p(B) - p(A and B)
13. If A and B are disjoint, what is $P(A \text{ and } B)$? Why? Where $P(A \text{ and } B)$ means the probability
P(A and B) = 0 that both events occur
Because they cannot occur at the same time.
14. Independence of Random Processes TWO process are independent if knowing the introme of one
provides no useful information about the other outcome.
15. Consider rolling two dice where one is red and the other is white. What is the probability of the sum of rolling which is 2?
Red die got 1 and white die got "1"
$P(Sum = 2) = P(Red = 1) \times P(White = 1) = \frac{1}{36}$
16. MULTIPLICATION RULE FOR INDEPENDENT PROCESSES. LF A and B represent events from two different and independent process.
Then the probability that both A and B occur can be
calculated by D(A and B) = D(A) x D(B)