MAT1372, Classwork5, Fall2025

2.2 Considering Categorical Data

1. Contingency Table: A table that <u>SUMMONIZE</u> data for two categorical variables.

For example, with 3 types of homeownership (mortgage, rent, own) and 2 types of app_type (individual, joint), how many combinations are we have ? $3 \times 2 = 6$

	homeownership	ownership app_type	
1	MORTGAGE	individual	
2	RENT	individual	
3	RENT	joint	
4	OWN	individual	
:	:	•	
10000	MORTGAGE	joint	

		homeownership			
		rent	mortgage	own	Total
$\mathtt{app}_{ extsf{-}}\mathtt{type}$	individual	3496	3839	1170	8505
	$_{ m joint}$	362	950	183	1495
	Total	3858	4789	1353	10000

Figure 2.17: A contingency table for app_type and homeownership.

2. Finish the tables based on the information in Figure 2.17.

3496

homeownership	Count
rent	3858
mortgage	4789
own	1353
Total	(0,000

app_type	Count
individual	8505
joint	1495
Total	(0,000.

3. Row/Column proportions: Sometimes it is useful to understand the fractional breakdown of one variable in another, and we can modify the contingency table to provide such a view.

Row proportion of the table in Fig. 2.17

Column proportion of the table in Fig. 2.17

_		rent	mortgage	own	Total
ì	individual	(0.411)	0.451	0.138	1.000
_	joint	0.242	0.635	0.122	1.000
	Total	0.386	0.479	0.135	1.000

	rent 1	mortgage	own	Total
individua	1 (0.906)	0.802	0.865	0.851
joint	0.094	0.198	0.135	0.150
Total	1.000	1.000	1.000	1.000

(1) In the table of row proportion, what does 0.411 represent?

Under individual loquer, there are 41,1% who rent

(2) In the table of column proportion, what does 0.906 represent?

Under the venter, there are 90.6% who has Individual loan

4. Here is the result of an experiment study on a new malaria vaccine. All patients were exposed to a malaria parasite strain to test if they got infected.

(1) The proportion who got infected in the treatment group is _5/14_

(2) The proportion who got infected in the control group is $\frac{6/6}{2} = 1$

Figure 2.29: Summary results for the malaria vaccine experiment.

(3) The difference between the proportion of patients who got infected in the two groups is 64,3%

(4) Could we conclude that the vaccine is effective? Not sure. Since the sample size is very small, and
it is unclear whether the difference in (3) provides convincing evidence

2.3 Case Study: malaria vaccine
1. Independence model (H_0) and Alternative model (H_A) .
When the results of a study are unclear, we label these two competing claims, H_0 (H-nought) and H_A (H-A):
H_0 : Independence model. The variables treatment and outcome are independent.
H_A : Alternative model. The variables are not independent.
In the experiment study on the malaria vaccine, what are the H_0 and H_A in this study?
Ho: The treatment and infection have no relationship was due to chance
HA: The difference in infection rate was not due to chance, and vaccine
2. Can H_0 and H_A be true at the same time? N_0 , only one of them could be true
3. If we believe H_0 is true, what does that mean?
It means no matter these 20 people got vaccine or not, people got infected
4. If we claimed H_0 is true, how to prove it? $\frac{1}{1}$
The simulations where We pretend we know the Vaccine being tested doesn't work. The purpose of the simulations: One wants to understand if the large
The purpose of the simulations: One wants to understand if the large
difference we observed is common in these simulation
If it is common, then maybe the difference was purely due to chanse, which means Ho is true.
If it is very uncommon, then the possibility that vaccine was helpful seems more which means H, is true.
which means H is true.
5. How to implement these simulations?
(1) Prepare 20 Cards with 11 marked as infected and 9 "no infected" (2) Shuffle them thoroughly and deal 14 in treatment, and 6 in control group
(2) 5 huffle them thoroughly and deal 14 in treatment, and 6 in control
(3) Then we calculate the difference between the proportion of control and treatment
(4) Repeating (2) & (3) many times (150 times) and get a distribution
(4) Repeating (2) & (3) many times (50 times) and get a distribution (5) What do those simulations tell us? From chance alone.
It apears that the large difference (64.3%)
only happen twice out of coo simulations
which is very un common.
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

SO, Ho is NOT true and HA is true

Figure 2.31: A stacked dot plot of differences from 100 simulations produced under the independence model, \dot{H}_0 , where in these simulations infections are unaffected by the vaccine. Two of the 100 simulations had a difference of at least 64.3%, the difference observed in the study.

Difference in Infection Rates