MAT1372, Classwork4, Fall2025

2.1 Examining Numerical Data

- 1. Dot plots and the mean
 - (1) Dot plots: A dot plot is a One-Variable scatterplot.
- 5% 10% 15% 20% 25%
- (2) Mean: The mean, denoted by \bar{x} , is a common way to measure the \underline{Cuntor} of \underline{a} distribution data.

It can be computed as the sum of the observed values divided by the number of the observations:

$$\bar{x} = \frac{x_1 + x_2 + x_1 + x_2}{x_1}$$
 where x_1, x_2, \dots, x_n represent the *n* observed values.

- (3) Sample mean \bar{x} and population mean μ : $\overline{X} \longrightarrow \mathcal{M}$ (there is a natural bias b/c $\bar{x} \neq \mathcal{M}$)
- (4) Weighted mean: Some case's variable is more important than the same variable from other cases
- 2. Histograms and the shape: (1) Histogram: It provides a view of the density

- (2) Skewness: a distribution with a long tail
- (3) Mode of a distribution: It is represented by the number of the prominent peaks.

3. Variance and Standard Deviation	Sample	Sample
(1) Deviation	$(2) \underline{Vavianco} s^2$	(3) Standard deviation s
$x_i - \bar{x}$ for all $i = 1, 2, \dots, n$	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$
(4) Bessel's correction: $\frac{1}{\sqrt{1 + \frac{1}{2}}} \frac{1}{\sqrt{1 + \frac{1}{2}}}$	Sy population varia	$S_{\mu}^{2} = \sum_{i=1}^{4} (X_{i}^{2} - M)^{2}$

(5) Besides mean and standard variance, modality or skewness plays a role in the description of distribution.

Why? $S_{n,\overline{x}} = \frac{\sum_{i=1}^{n} (\chi_i - \overline{\chi})^2}{(\chi_i - \overline{\chi})^2}$

The standard deviation represents the typical deviation of standard deviation of observations from the mean. Usually about 70% of the data will be with one standard deviation of mean. About 90% of the data will data will be with two standard deviations of mean.

5. (Bessel's correction) Given a mid-term grade for 10 students in a certain Math course:

Amy	Bert	Barry	Doug	Emily	Howard	Leo	Penny	Raj	Wil
92	95	70	95	60	30	50	70	78	80

and a sample from these 10 grades: $x = \{70, 60, 30, 50, 70\}$. Find (a) μ , (b) \bar{x} , (c) $s_{n,\mu}$, (d) $s_{n,\bar{x}}$, (e) $s_{n,\bar{x}}$

6. Box plots, Quartiles and the median

suspected outliers

max whisker reach upper whisker

15%

Q₃ (third quartile)

Redian
Q₁ (first quartile)

lower whisker

Figure 2.10: A vertical dot plot, where points have been horizontally stacked, next to a labeled box plot for the interest rates of the 50 loans.

- (1) Median: Number of observations, then there will be two value
- (2) The first quartile Q_1 : $\frac{1}{250}$ of the data fall below the their arrange
- (3) The third quartile Q_3 : 7500 of the data fall below this value
- (4) The interquartile range $IQR = Q_3 Q_1$:
- (5) The whiskers: upper one $0_3 + 1.5 \times IQR$

and lower one $Q_1 \sim 1.5 \times IQR$

(6) Outlier: the data outside the upper/lower whiskers.

I'don'tify skewness, possible error

7. Robust statistic:

					- 1	ator	oot E	Data				
5%	10%			15	%			209	%	25%	30%	35%
26.3% to 35% § § 8 § §	8888	• 8	(8	00	• •	•	•		•
26.3% to 15% 💈 🖁 🛢 🥞		• 8	•	•		8	00	• •	•	•		
Original # # # # #	8888	• 8	•			8	••	• •	•	• •		

Figure 2.11: Dot plots of the original interest rate data and two modified data sets.

	rob	ust	not robust		
scenario	median	IQR	\bar{x}	s	
original interest_rate data	9.93%	5.76%	11.57%	5.05%	
move $26.3\% \rightarrow 15\%$	9.93%	5.76%	11.34%	4.61%	
move $26.3\% \rightarrow 35\%$	9.93%	5.76%	11.74%	5.68%	

Figure 2.12: A comparison of how the median, IQR, mean (\bar{x}) , and standard deviation (s) change had an extreme observations from the interest_rate variable been different.

Some statistic Variables will be changed if the extreme observations are changed. It ralled robust statistics b/c extreme observations have little effect on their values.