MAT1372, Classwork1, Fall2025 | ID: | Name: | |--|--| | 1.1 Case Study: using stents to prevent strokes | | | principle question the researchers hope to answer | ness of stents in treating of strokes. We start by writing the er: Fauls reduce the risk of strokes? | | 2. Two groups that apply when conducting an ex | xperiment with patients: | | Treatment group: patients in this group get | medical management QNO treatment. | | | medical management but no treatment. | | 3. To conduct the experiment to answer the ques | stion in 1., how to apply the two groups setup? | | Treatment group: patients received | a steat and medical management | | Control group: <u>Patients</u> <u>recivee</u> | a steut and medical management. | | 4. After randomly assigning patients into two grades are significantly assigning patients into two grades. Patient group 0-30 days 0-365 days 1 treatment no event no event 2 treatment stroke stroke 3 treatment no event no event : : : : | 0-30 days 0-365 days stroke no event stroke no event treatment 33 191 45 179 control 13 214 28 199 | | 450 control no event no event
451 control no event no event | Total 46 405 73 378 Figure 1.2: Descriptive statistics for the stent study. | | (1) How many of patients are in the treatment grown (2) How many of patients are in the control grown (3) How many of patients had stroke by the end (4) How many of patients have gotten a stroke by | $\frac{224}{\text{up?}}$ $\frac{224}{22}$ $\frac{33+19}{45+199}$ $\frac{229}{45}$ of the first year are in the treatment group? $\frac{45}{45}$ | | | , | | 5. Oummary statistic: A summary statistic is | a <u>Single</u> number summarizing a large amount of date. | | Which (5) and (6) in 11 | CM SUMMOUN STATE | ## 1.2 Data Basics 1. Given a data set. We have The humber of the units in this data set. It is also called **observational unit**. <u>Vαγία ble S</u>: The characteristics of the cases. 2. Given the data set for 3142 counties in the United State: | | | -+-+- | | b | | homeownership | multi_unit | | | median_edu | median_hh_income | |------|----------|---------|--------|-----------|---------|---------------|------------|--------------|-------|---------------------------|------------------| | | name | state | pop | popchange | poverty | | | $unemp_rate$ | metro | | | | 1 | Autauga | Alabama | 55504 | 1.48 | 13.7 | 77.5 | 7.2 | 3.86 | yes | ${ m some}_{ m college}$ | 55317 | | 2 | Baldwin | Alabama | 212628 | 9.19 | 11.8 | 76.7 | 22.6 | 3.99 | yes | $some_college$ | 52562 | | 3 | Barbour | Alabama | 25270 | -6.22 | 27.2 | 68.0 | 11.1 | 5.90 | no | $hs_diploma$ | 33368 | | 4 | Bibb | Alabama | 22668 | 0.73 | 15.2 | 82.9 | 6.6 | 4.39 | yes | $hs_diploma$ | 43404 | | 5 | Blount | Alabama | 58013 | 0.68 | 15.6 | 82.0 | 3.7 | 4.02 | yes | $hs_{-}diploma$ | 47412 | | 6 | Bullock | Alabama | 10309 | -2.28 | 28.5 | 76.9 | 9.9 | 4.93 | no | $hs_diploma$ | 29655 | | 7 | Butler | Alabama | 19825 | -2.69 | 24.4 | 69.0 | 13.7 | 5.49 | no | $hs_{-}diploma$ | 36326 | | 8 | Calhoun | Alabama | 114728 | -1.51 | 18.6 | 70.7 | 14.3 | 4.93 | yes | $some_{-}college$ | 43686 | | 9 | Chambers | Alabama | 33713 | -1.20 | 18.8 | 71.4 | 8.7 | 4.08 | no | $hs_{-}diploma$ | 37342 | | 10 | Cherokee | Alabama | 25857 | -0.60 | 16.1 | 77.5 | 4.3 | 4.05 | no | $hs_{-}diploma$ | 40041 | | : | : | : | : | : | : | : | : | : | : | : | : | | | | | | | | | • | | | | | | 3142 | Weston | Wyoming | 6927 | -2.93 | 14.4 | 77.9 | 6.5 | 3.98 | no | $some_college$ | 59605 | Cases: all the countries in the U.S. Variables: name, state, population, ..., modian household in come - 4. In the table from 2., classify the variables by the types: - (1) continuous numerical: <u>pop. dange</u>, <u>poverty, home ownership</u> - (2) discrete numerical: Population. - (3) nominal: county name - (4) ordinal: median education - 5. Relationships between variables. Based on the data set for 3142 counties in the United State, we can ask questions like: - (1) If homeownership is lower than the national average in one county, will the percent of multi-unit structures in that county tend to above or below the national average? - (2) Does a higher-than-average increase in county population tend to correspond to counties with higher or lower median household incomes?