Quiz4, MAT1375 Professor Chiu

Name:

- This quiz consists of 7 questions for a total of 10 points.
- You have 10 minutes to complete the quiz.
- Wishing you success.

(5 points)True or False questions:

- 1. Let $f(x) = 7\sqrt{x}$ and $g(x) = 5\sqrt{x}$. Then the domain of (f + g)(x) is $[0, \infty)$.
- 2. \bot Let f(x) = 3x + 6 and g(x) = 2x 8. Then the domain of $\left(\frac{f}{g}\right)(x)$ is $(-\infty, 4) \cup (4, \infty)$. 3. \bot Let f(x) and g(x) be two functions. Then $D_{f-g} = D_f \cap D_g$.
- 4. The composition of the function f with function g is defined by $(f \circ g)(x) = f(g(x))$.
- 5. Let f(x) and g(x) be two functions. Then $(f \circ g)(x) = (g \circ f)(x)$.

Show all your work and justify your answer:

(3 points)6. Let $f(x) = \frac{4}{x+2}$ and $g(x) = x^2 - 3x$. Find $(f \circ g)(x)$ and state its domain.

$$(f \circ g)(x) = f(g(x)) = \frac{4}{g(x)+2} = \frac{4}{x^2-3x+2}$$

To find its domain, it starts with IR but x=3x+2 =0.

Then
$$x^2 = (x-1)(x-2) \neq 0 \Rightarrow (x-1) \neq 0$$
 and $(x-2) \neq 0$

 \Rightarrow X + 1 and X + 2

Thus, its domain is
$$R-\xi_{1,2}$$
 or $(-\infty,1)U(1,2)U(2,\infty)$ or $\{X\in R \mid X\in (-\infty,1)U(1,2)U(2,\infty)\}$

(2 points)7. Given two functions f and g by the tables:

\ddot{x}	1	2	3	4	5	6	x	1	2	3	4	5	6
f(x)	3	1	2	5	6	3	g(x)	5	2	6	1	2	4

Please use the information from the table of f and g to complete the following table:

x 1	2	3	4	5	6	
$(g \circ f)(x)$	5	2	2	4	6	
g(f(x)) $f(x) = g(x) = 6$ $g(f(x)) = g(x) = 5$	ge ge	(f(s))=g(2) = 2	g(f(4)) = = 2 g(f	g(5) $g(5) = g(6)$	(fus) = 9(3) - 6	