MAT1375, Classwork13, Fall2025

Ch13. Exponential and Logarithmic Functions I

1. Definition of the **Exponential Function**:

A function f is called an exponential function f with b for any real number x if $f(x) = c \cdot b^x$,

for some |c| number c and |c| real number b which is called the |c| .

2. Please circle the given function if it is an **exponential function**:

$$(1)f(x) = 2^{x}. \qquad (2)g(x) = 3^{x+1}. \qquad (3)h(x) = e^{x}. \qquad (4)k(x) = \left(\frac{1}{5}\right)^{x}. \qquad (5)l(x) = x^{2}.$$

$$(4)k(x) = \left(\frac{1}{5}\right)^{x}. \qquad (5)l(x) = x^{2}.$$

$$(5)l(x) = x^{2}.$$

$$(6)l(x) = x^{2}.$$

$$(7)l(x) = x^{2}.$$

$$(8)l(x) = x^{2}.$$

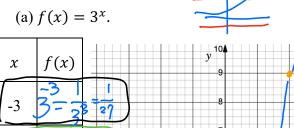
$$(8)l(x) = x^{2}.$$

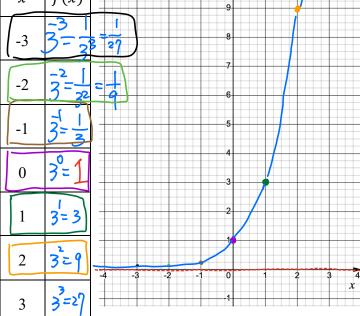
$$(9)l(x) = x^{2}.$$

$$(9)l(x)$$

Euler's number $e=2.71828182\cdots$ irrational number which is still a real number

3. Graph the given functions:

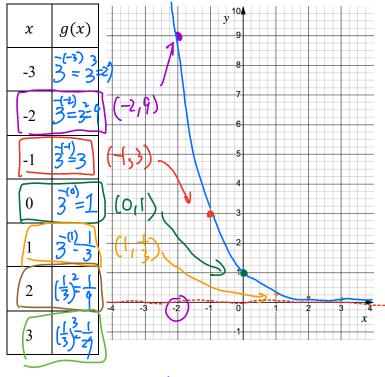




Domain: $(-\infty, \infty)$; Range: $(0, \infty)$

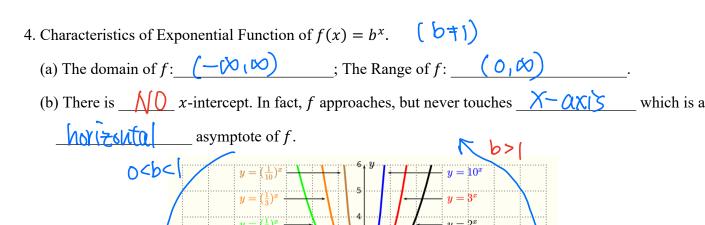
Asymptote: $\underline{\mathsf{H.A. y=0}}$.

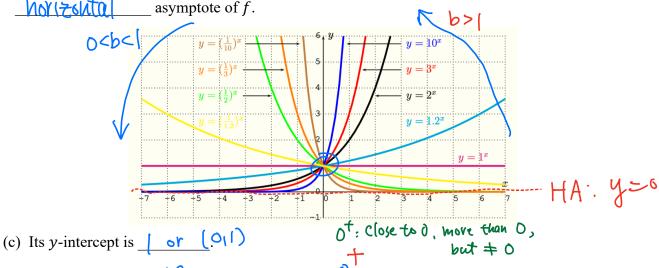
(b)
$$g(x) = \left(\frac{1}{3}\right)^x = \left(3^{-1}\right)^x = 3^{-\infty}$$

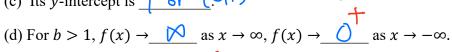


Domain: (-0); Range: (0).

Asymptote: HA, Y=0.







(e) For
$$0 < b < 1$$
, $f(x) \rightarrow \bigcirc$ as $x \rightarrow \infty$, $f(x) \rightarrow \bigcirc$ as $x \rightarrow -\infty$.

- (f) f is one-to-one and has an f function.
- 6. What is the 4-steps strategy to find the inverse of a given function? Can it be used to find the inverse function

of
$$f(x) = b^x$$
?

Step 1 replace fox by y : $y = b^x$

Step 2 switch x and y . $x = b^x$

5 tep 3 solve for y : We can not

7. Definition of **Logarithmic Function**:

For x > 0 and b > 0, $b \ne 1$, the logarithmic of x with base b is defined by the equivalence

$$x = b^y \iff y = \log_b(x).$$

This computes the inverse of the exponential function $y = b^x$ with base b. (We exchange χ and χ to get $x = b^y$ and solve for _____).

8. Rewrite the equation as a logarithmic equation.

a)
$$30 = x$$
. b) $e^{x} = 17$, c) $20 = 53$. d) $60 = 8$, $4 = \log_{3}(x)$ $x = \log_{e}(17)$ $70 = \log_{2}(53)$ $3 = \log_{b}(8)$
 $\log_{3}(x)$ $\log_{3}(x)$