MAT1375, Classwork10, Fall2025

Ch10. Rational Functions I

1. Definition of the **Rational function**:

A <u>function</u> is a fraction of two polynomials $f(x) = \frac{p(x)}{g(x)}$, where p(x) and g(x) are both polynomials, and $g(x) \neq 0$.

The domain of a rational function f is all real numbers for which the denominator g(x) is not zero:

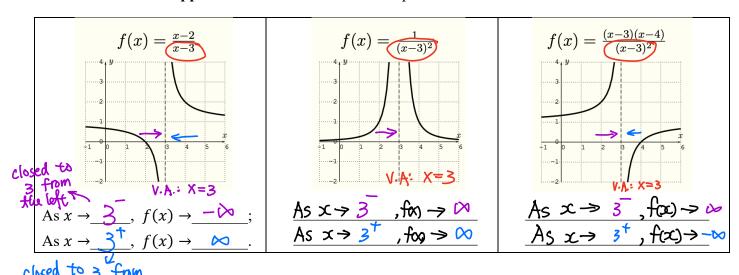
$$D_f = \{ x \in \mathbb{R} \mid D_f \cap D_g \text{ and } Q(x) \neq 0 \}$$

2. Arrow Notation: Given a constant α and we have

$x \rightarrow a^+$:	x approaches a from the right (x is very closed to a but $x \neq a$ and $x \geq a$)
$x \rightarrow a^-$:	x approaches a from the left (x is very closed to a but $x \neq a$ and $x < a$)
$x \to \infty$:	x approaches infinity (x increases without bound)
$x \to -\infty$:	x approaches negative infinity (x decreases without bound)

3. The definition of a **Vertical Asymptote**:

The line x = a is a <u>Vertical asymptote</u> of the graph of a function f if f(x) increases or decreases without bound as x approaches a. Here are three examples:



4. How to locate Vertical Asymptotes: Let $f(x) = \frac{p(x)}{g(x)}$ be a rational function.

(1) If p(x) and g(x) have no Common factor(S), and a is a zero of g(x) which makes f(x)

is a vertical asymptote of the graph of f(x).

(2) If \mathbf{a} is a zero of both p(x) and g(x) ($p(a) = \underline{\bigcirc}$, $g(a) = \underline{\bigcirc}$.) which means $\underline{\bigcirc}$ is the common factor of p(x) and g(x), then there is a <u>jump/remouble discontinuity</u> at x = aand there is \underline{MO} Vertical asymptote at x = a.

