MAT1375, Classwork8, Fall2025

2x43x5+/

Ch8. Graphing Polynomials

1. The End Behavior of the polynomials and the Leading Coefficient Test:

2×42×1

As x goes to ∞ or $-\infty$, the graph of polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0, \quad (a_n \neq 0)$$

either rises or falls eventually. Here, we can conclude this into the following table

2. Roots of a Function and *x*-intercepts.

A <u>root</u>, or <u>solution</u> of a polynomial f(x) is a number c so that f(c) =

Each **real** root/zero/solution of the polynomial f(x) appears as an X of the graph of f(x). (Here '**real**' means not a complex number)

Degree	Number of the roots	Graph of the polynomial of that degree
2	At most 2 (real)	2 1 0 1 2 3 4 5 -2 -1 0 1 2 3
		2 (real) rosts
3	At most 3 (real) roots	3 (real) nots (x=1, x=2, x=4) 2 (real) nots (x=2, x=4) $(x=2, x=4)$
4	At most 4 (real) nosts	4 (real) mots 2 (real) roots (x=0, x=1, x=2, x=3s)

The graph **Crosses**

of f and this root repeats \underline{n} times. We call r a root with

The graph tends to **flatten out** near the roots with **multiplicity** greater than

4. **Turning Points** of Polynomial Functions:

Let f(x) be a polynomial function of **degree** n, then the graph of f has at most $| \cdot |$ turning points.

- 5. The essential part for drawing a complete graph of f:
 - End Behavior by Lording Welliam test (how the function behaves when $\frac{X}{X}$ approaches $-\infty$)
 - All roots (which are ? intercepts) with the Multiplicities

 - All asymptotes (for rational functions in next chapter)
 - Turning points with Extrema (that is all YMXXIMM MINIMUM)

6. The domain of a polynomial f is Mumber and it is continuous for all real numbers and there are no jumps, no <u>Vertical</u> or <u>Marizantal</u> asymptotes, and no <u>corner (cusp</u> The following graphs cannot be graphs of polynomials:

