MAT1375, Classwork6, Fall2025

Ch6. The Inverse of a Function

1. (Review) Let f and g be the functions defined by the table below. Complete the table by performing the indicated operations.

x	1	2	3	4	5	6	7
f(x)	4	5	7	0	-2	6	4
g(x)	6	-8	5	2	9	11	2
g(x) + 3	6+3=9	-8 +3=-5	573=8	2+3=5	9+3=12	11+3=14	2+3-5
f(x) - 2g(x)	f(1)-2g(1) =4-2.6=-8	f=5-2·(+6)=2	r)	-4	-20	-(6	0
g(x+3)	g(1+3) = $g(\varphi)$ =2	g(2+ 3) = 9	g(3+3) =g(6)=11	9(4 +3) =9(9)= 2	9 (573) =3(8) undi	Tived underval	f(r+3) = f
$(f \circ g)(x) = f(g)$	+(6) = 6	f(2)) =f(-8) undefin	f(g(z)) =((5)=-2	f(g(4)) =f(2)=5	f(g(s)) := +(g) (udd)	f(gG) $=f(II)$ undate	+(g(1)) =f(2)=5
$(g \circ f)(x) = g(fo)$	2	9	2	undet:	undof.	il	2
$(g \circ g)(x) = g[$	(x)) 9(g()))	, 9	-8	undeln	undefind	-8

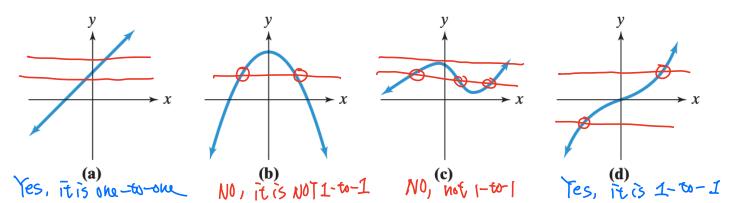
2. Complete the definition of the one-to-one function (or injective):

Given a function f(x). If any two different inputs X = X always have different outputs X = X then we call this function f a **one-to-one function**.

3. The tables below describe assignments between inputs x and outputs y. Determine which of the given tables describe a one-to one function.

Since	input	(G =	F 3	but	Huy	how	e su	٤
	у	1	3	5	7	1	9	
(a)	x	19	7	6	-2	(3)	-11	

same output which is 1,


so, no, this is NOT me—to—one
function

(b)	x	19	7	6	-2	3	-1
	у	1	2	3	4	5	6
19 3					Yes	, it	13

because different impost get different outputs

4. **Horizontal Line test**: A function is one-to-one when every horizontal line intersects the graph of the function most one-to-one when every horizontal line intersects the graph of the function

5. Use **Horizontal Line Test** to determine which of the following are the graphs of one-to-one functions.

6. Complete the definition of the Inverse of a Function :	
Let f be a function with domain D_f and the range R_f , a	and assume that f is one-to-one. The inverse of f is
the function f^{-1} , determined by: $f(x) = y \text{ means precisely the}$	at $f(y) = x$ old input \Rightarrow now output
the domain of f	output y input
Therefore, we have $D_{f^{-1}} = R_f$, and $R_{f^{-1}} = R_f$. How to check if two given functions are inverse with ea	ch other:
Let f and g be two functions such that	
f(g(x)) = x for every	x in the domain of g and
	x in the domain of f .
The function g is the inverse of the function f and is g	
8. How to find the inverse function for a given invertible for	f(x):
Step 1: Redge for by 4	(O ₅ 1)
Step 2: Interchange X and q	(input) > ×10/1/12/3
Step3: <u>Solve for g</u> (isolate y)	fm 11 2 7 10
Step4: Replace y by f (x)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
9. Given a function $f(x) = x^2 + 1$ $(x \ge 0)$	Xett
(a) Find the inverse function of $f(x)$.	-y-10
(b) Graph f and f^{-1} in the same coordinate system. Step 1 $y = x^{-1}$, $x > 0$, $y > 1$	9
Step 1 $y = x \neq 1, x \geq 0, y \geq 1$ step 2 $x = y \neq 1, y \geq 0$	
5 top 2 / - 7 · · · · · · · · · · · · · · · · · ·	CUMUNE OF A
$56p3 - y^2 = x - 1 , y > 0$	Symmutific)
y=t, x-1, y>0	distant A d
\Rightarrow $y=\sqrt{x-1}$.	3
5 top4 (x>1)	2
	3 4 5 6 7 8 9 10 x
	KIO 1 12 [5/10 (5,2)
(1.0)	81X101/1/313

$$f(x)$$

Given
$$f \propto = \frac{x+2}{x+1}$$
, $x \neq -1$. Find $f(x)$.

Step1 $y = \frac{x+2}{x+1}$, $x \neq -1$

Step2 $x = \frac{y+2}{y+1}$, $y \neq -1$

Step3 times $(y+1)$ on both sides $x(y+1) = (y+2)$
 $xy + x = y+2$
 $xy - y = z - x$
 $y(x-1) = z - x$

dividing by
$$(X-1)$$
 $y=\frac{2-X}{X-1}$, $X \neq 1$

both sides

step4.
$$f'(x) = \frac{2-x}{x-1}$$
, $x \neq 1$