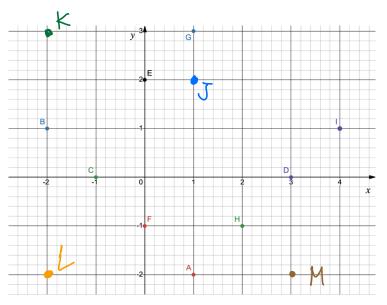
MAT1375, Classwork3, Fall2025

Ch3. Functions via Graphs

1. The definition of a Relation:


A <u>relation</u> is any set of <u>ordered</u> pairs. The set of all first components of the ordered pair is of the relation.

2. Write down the ordered pair points in the given coordinate:

D:
$$(\ \ \ \ \ \ \)$$
; E: $(\ \ \ \ \ \ \)$; F: $(\ \ \ \ \ \ \ \ \ \)$;

$$G: (| , 3); H: (2, - |); I: (4, |).$$

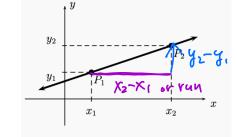
3. Plot the given points in a rectangular coordinate:

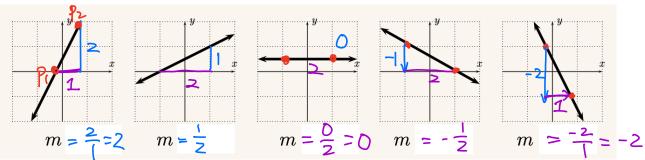
4. From a relation to a function:

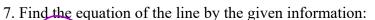
tach element in domain only gets one element from range

5. Linear Functions and the Slopes:

A linear function is a function of the form

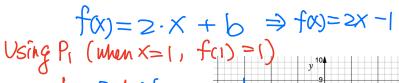

$$f(x) = M \cdot X + D$$

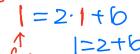

where m is the slope, of the line and (0,b) is y of the line. The domain of a line is All Real Number, $[R, (-\infty, \infty)]^y$


6. The slope and its sign:

Given two points of a line $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$. Then the slope m is

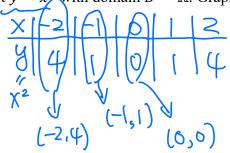
$$m = \frac{y_2 - y_1}{x_2 - x_1} \quad \left(\frac{\text{rise}}{\text{tun}}\right)$$

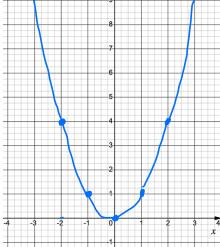



$$(1) m = 2$$
 and y-intercept is $(0, -1)$

$$f(x)=2\cdot X-1$$

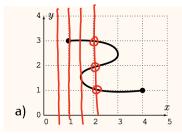
(2) the line passes (1,1) and
$$(-1, -3)$$

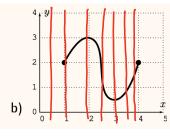

$$M = \frac{-3-1}{-1-1} = \frac{-4}{-2} = 2$$

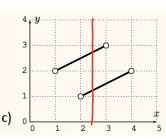


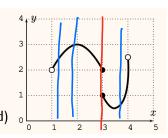
8. Functions given by graphs

Let
$$y = x^2$$
 with domain $D = \mathbb{R}$. Graph this on the given coordinate.

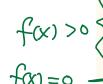


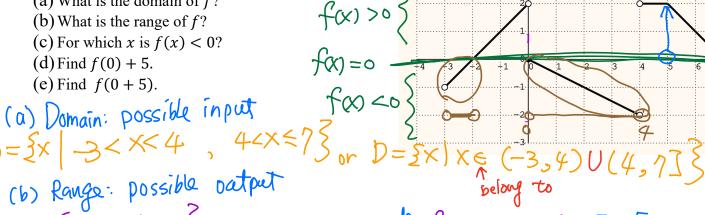



9. Vertical Line Test:


A graph is the graph of a function precisely when every Vertical the intersects the graph at most once

10. Use Vertical Line Test to determine which of the following are the graphs of functions.


No. this is NOT a function


No, this is Not a function

No, this is NOT a fundam

11. Let f be the function given by the following graph.

- (a) What is the domain of *f*?
- (b) What is the range of f?
- (c) For which x is f(x) < 0?
- (d) Find f(0) + 5.
- (e) Find f(0 + 5).

Range = $\frac{1}{4}$ $\frac{1}{2}$

$$(c)$$
 $3< \times < -2$ and $0< \times < 4$

(d) f(0) + 5 = 0 + 5 = 5

$$(e)f(0+5) = f(5) = 2$$