5.3 Exercises

xercise 5.1

Find f + g, f - g, $f \cdot g$ for the functions below. State their domain.

$$\begin{array}{ll} \text{(a)} f(x) = x^2 + 6x & \text{and } g(x) = 3x - 5 \\ \text{(b)} f(x) = x^3 + 5 & \text{and } g(x) = 5x^2 + 7 \\ \text{(c)} f(x) = 3x + 7\sqrt{x} & \text{and } g(x) = 2x^2 + 5\sqrt{x} \\ \text{(d)} f(x) = \frac{1}{x+2} & \text{and } g(x) = \frac{5x}{x+2} \\ \text{(e)} f(x) = \sqrt{x-3} & \text{and } g(x) = 2\sqrt{x-3} \\ \text{(f)} f(x) = x^2 + 2x + 5 & \text{and } g(x) = 3x - 6 \\ \text{(g)} f(x) = x^2 + 3x & \text{and } g(x) = 2x^2 + 3x + 4 \end{array}$$

Exercise 5.2

Find $\frac{f}{g}$, and $\frac{g}{f}$ for the functions below. State their domain.

V a)
$$f(x) = 3x + 6$$
 and $g(x) = 2x - 8$
(b) $f(x) = x + 2$ and $g(x) = x^2 - 5x + 4$
c) $f(x) = \frac{1}{x-5}$ and $g(x) = \frac{x-2}{x+3}$
d) $f(x) = \sqrt{x+6}$ and $g(x) = 2x + 5$
e) $f(x) = x^2 + 8x - 33$ and $g(x) = \sqrt{x}$

Exercise 5.3

Let f(x) = 2x - 3 and $g(x) = 3x^2 + 4x$. Find the following compositions:

$$\begin{array}{c|cccc} & \bigvee a) \ f(g(2)) & \bigvee b) \ g(f(2)) & \bigvee c) \ f(f(5)) \\ & \bigvee d) \ f(5g(-3)) & e) \ g(f(2)-2) & f) \ f(f(3)+g(3)) \\ & g) \ g(f(2+x)) & h) \ f(f(-x)) & i) \ f(f(-3)-3g(2)) \\ & j) \ f(f(f(2))) & k) \ f(x+h) & l) \ g(x+h) \end{array}$$

Exercise 5.4

Find the composition $(f \circ g)(x)$ for the following functions:

(a)
$$f(x) = 3x - 5$$
 and $g(x) = 2x + 3$
(b) $f(x) = x^2 + 2$ and $g(x) = x + 3$
(c) $f(x) = x^2 - 3x + 2$ and $g(x) = 2x + 1$
(d) $f(x) = x^2 + \sqrt{x + 3}$ and $g(x) = x^2 + 2x$
(e) $f(x) = \frac{2}{x+4}$ and $g(x) = x + h$
(f) $f(x) = x^2 + 4x + 3$ and $g(x) = x + h$

Exercise 5.5

Find the compositions

$$(f \circ g)(x), \quad (g \circ f)(x), \quad (f \circ f)(x), \quad (g \circ g)(x)$$

for the following functions:

a)
$$f(x) = 2x + 4$$
 and $g(x) = x - 5$
b) $f(x) = x + 3$ and $g(x) = x^2 - 2x$
c) $f(x) = 2x^2 - x - 6$ and $g(x) = \sqrt{3x + 2}$
d) $f(x) = \frac{1}{x+3}$ and $g(x) = \frac{1}{x} - 3$
e) $f(x) = (2x - 7)^2$ and $g(x) = \frac{\sqrt{x+7}}{2}$

Exercise 5.6

Let f and g be the functions defined by the table below. Complete the table by performing the indicated operations.

x	1	2	3	4	5	6	7
f(x)	4	5	7	0	-2	6	4
g(x)	6	-8	5	2	9	11	2
f(x) + 3							
4g(x) + 5							
g(x) - 2f(x)							
f(x+3)							

5.3. EXERCISES

Exercise 5.7

Let f and g be the functions defined by the table below. Complete the table by composing the given functions.

x	1	2	3	4	5	6
f(x)	3	1	2	5	6	3
g(x)	5	2	6	1	2	4
$(g \circ f)(x)$						
$(f \circ g)(x)$						
$(f \circ f)(x)$						
$(g \circ g)(x)$						

Exercise 5.8

Let f and g be the functions defined by the table below. Complete the table by composing the given functions.

x	0	2	4	6	8	10	12
f(x)	4	8	5	6	12	-1	10
g(x)	10	2	0	-6	7	2	8
$(g \circ f)(x)$							
$(f \circ g)(x)$							
$(f \circ f)(x)$							
$(g \circ g)(x)$							