43

Exercises 3.3

Find the slope and y-intercept of the line with the given data. Using the

3.3. EXERCISES 45

Exercise 3.3

Below are three graphs for the functions f, g, and h.

function f:

function g:

function h:

 \bigvee a) Find the domain and range of f.

 \bigvee b) Find the domain and range of g.

 V_c) Find the domain and range of h.

Find the following function values:

46

Exercise 3.4

Use the vertical line test to determine which of the following graphs are the graphs of functions.

Exercise 3.5

Let f be the function given by the following graph.

- a) What is the domain of f?
- b) What is the range of f?
- c) For which x is f(x) = 0?
- d) For which x is f(x) = 2?
- e) For which x is $f(x) \leq 1$?
- f) For which x is f(x) > 0?
- g) Find f(2) and f(5).
- h) Find f(2) + f(5).
- i) Find f(2) + 5.
- j) Find f(2+5).

3.3. EXERCISES 47

Exercise 3.6

The graph below displays the number of students admitted to a college during the years 1995 to 2007.

- a) How many students were admitted in the year 2000?
- b) In what years were the most students admitted?
- c) In what years did the number of admitted students rise fastest?
- d) In what year(s) did the number of admitted students decline?

Consider the function described by the following formula:

$$f(x) = \begin{cases} x^2 + 1 & \text{, for } -2 < x \le 0 \\ x - 1 & \text{, for } 0 < x \le 2 \\ -x + 4 & \text{, for } 2 < x \le 5 \end{cases}$$

What is the domain of the function f? Graph the function f.