We still need to find a_{333} in the above formula:

 $a_{333} = 15 - (333 - 1) \cdot 4 = 15 - 332 \cdot 4 = 15 - 1328 = -1313$

This gives a total sum of

$$\sum_{n=1}^{333} a_n = \frac{333}{2} \cdot (15 + (-1313)) = \frac{35}{2} \cdot (-1298) = -216, 117.$$

24.3 Exercises

Exercise 24.1

Find the first seven terms of the sequence.

(a)
$$a_n = 3n$$
 (b) $a_n = 5n + 3$ (c) $a_n = n^2 + 2$
(c) $a_n = n$ (c) $a_n = (-1)^{n+1}$ (c) $a_n = \frac{\sqrt{n+1}}{n}$
(c) $a_k = 10^k$ (c) $a_i = 5 + (-1)^i$ (c) $a_n = \sin(\frac{\pi}{2} \cdot n)$

Exercise 24.2

Find the first six terms of the sequence.

 $\begin{array}{ll} \text{a)} & a_1=5, & a_n=a_{n-1}+3 \text{ for } n\geq 2 \\ \text{b)} & a_1=7, & a_n=10\cdot a_{n-1} \text{ for } n\geq 2 \\ \text{c)} & a_1=1, & a_n=2\cdot a_{n-1}+1 \text{ for } n\geq 2 \\ \text{d)} & a_1=6, & a_2=4, & a_n=a_{n-1}-a_{n-2} \text{ for } n\geq 3 \end{array}$

Exercise 24.3

Find the value of the series.

(a)
$$\sum_{n=1}^{4} a_n$$
, where $a_n = 5n$ (b) $\sum_{k=1}^{5} a_k$, where $a_k = k$
(c) $\sum_{i=1}^{4} a_i$, where $a_n = n^2$ (d) $\sum_{n=1}^{6} (n-4)$
(e) $\sum_{k=1}^{3} (k^2 + 4k - 4)$ (f) $\sum_{j=1}^{4} \frac{1}{j+1}$

Exercise 24.4

Is the sequence below part of an arithmetic sequence? If it is part of an arithmetic sequence, find the formula for the *n*th term a_n in the form $a_n = a_1 + (n-1) \cdot d$.

(A)	$5, 8, 11, 14, 17, \ldots$	b)	$-10, -7, -4, -1, 2, \dots$
V)	$-1, 1, -1, 1, -1, 1, \ldots$	d)	$18, 164, 310, 474, \ldots$
e)	$73.4, 51.7, 30, \ldots$	f)	$9, 3, -3, -8, -14, \ldots$
g)	$4, 4, 4, 4, 4, \ldots$	h)	$-2.72, -2.82, -2.92, -3.02, -3.12, \ldots$
ί)	$\sqrt{2}, \sqrt{5}, \sqrt{8}, \sqrt{11}, \ldots$	j)	$\frac{-3}{5}, \frac{-1}{10}, \frac{2}{5}, \ldots$
k)	$a_n = 4 + 5 \cdot n$	l)	$a_j = 2 \cdot j - 5$
m)	$a_n = n^2 + 8n + 15$	n)	$a_k = 9 \cdot (k+5) + 7k - 1$

Exercise 24.5

Determine the general *n*th term a_n of an arithmetic sequence $\{a_n\}$ with the data given below.

J _{a)}	$d=4$, and $a_8=57$	J _{b)}	$d = -3$, and $a_{99} = -70$
c)	$a_1 = 14$, and $a_7 = -16$	d)	$a_1 = -80$, and $a_5 = 224$
e)	$a_3 = 10$, and $a_{14} = -23$	f)	$a_{20} = 2$, and $a_{60} = 32$

Exercise 24.6

Determine the value of the indicated term of the given arithmetic sequence.

a)	if $a_1 = 8$, and $a_{15} = 92$,	find a_{19}
b)	if $d = -2$, and $a_3 = 31$,	find a_{81}
c)	if $a_1 = 0$, and $a_{17} = -102$,	find a_{73}
d)	if $a_7 = 128$, and $a_{37} = 38$,	find a_{26}

Exercise 24.7

Determine the sum of the arithmetic sequence.

(a) Find the sum $a_1 + \cdots + a_{48}$ for the arithmetic sequence $a_n = 4n + 7$. (b) Find the sum $\sum_{n=1}^{21} a_n$ for the arithmetic sequence $a_n = 2 - 5n$. c) Find the sum: $\sum_{n=1}^{99} (10 \cdot n + 1)$ d) Find the sum: $\sum_{n=1}^{200} (-9 - n)$

ve) Find the sum of the first 100 terms of the arithmetic sequence:

 $2, 4, 6, 8, 10, 12, \ldots$

f) Find the sum of the first 83 terms of the arithmetic sequence:

 $25, 21, 17, 13, 9, 5, \ldots$

 \mathbf{y}) Find the sum of the first 75 terms of the arithmetic sequence:

2012, 2002, 1992, 1982, ...

n) Find the sum of the first 16 terms of the arithmetic sequence:

 $-11, -6, -1, \ldots$

) Find the sum of the first 99 terms of the arithmetic sequence:

 $-8, -8.2, -8.4, -8.6, -8.8, -9, -9.2, \ldots$

j) Find the sum

$$7 + 8 + 9 + 10 + \dots + 776 + 777$$

k) Find the sum of the first 40 terms of the arithmetic sequence:

 $5, 5, 5, 5, 5, \ldots$