395

the scalar product. These operations have to satisfy the following properties.

Associativity: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

 $\vec{v} + \vec{w} = \vec{w} + \vec{v}$ Commutativity:

Zero element: there is a vector \vec{o} such that $\vec{o} + \vec{v} = \vec{v}$ and $\vec{v} + \vec{o} = \vec{v}$ for every vector \vec{v} for every \vec{v} there is a vector $-\vec{v}$ such that $\vec{v}+(-\vec{v})=\vec{o}$ and $(-\vec{v})+\vec{v}=\vec{o}$ Negative element:

 $r \cdot (\vec{v} + \vec{w}) = r \cdot \vec{v} + r \cdot \vec{w}$ Distributivity (1): Distributivity (2): $(r+s)\cdot\vec{v} = r\cdot\vec{v} + s\cdot\vec{v}$ Scalar compatibility: $(r \cdot s) \cdot \vec{v} = r \cdot (s \cdot \vec{v})$ Identity: $1 \cdot \vec{v} = \vec{v}$

An important example of a vector space is the 2-dimensional plane $V=\mathbb{R}^2$ as it was discussed in this chapter. A thorough introduction to this topic will be provided in a course in linear algebra.

22.3 **Exercises**

Exercise 22.1

Graph the vectors in the plane.

c) \overrightarrow{PQ} with P(0,-4) and Q(6,0)

e) $\langle -3, -3 \rangle$

f) $\langle 5, 5\sqrt{2} \rangle$

Find the magnitude and direction angle of the vector.

d) $\langle 6, 8 \rangle$ d) $\langle -2, 5 \rangle$ d) $\langle -4, -4 \rangle$ d) $\langle 3, -3 \rangle$ d) $\langle 2, -2 \rangle$ d) $\langle 4\sqrt{3}, 4 \rangle$ e) $\langle -\sqrt{3}, -1 \rangle$ b) $\langle -4, 4\sqrt{3} \rangle$ i) $\langle -2\sqrt{3}, -2 \rangle$

j) \overrightarrow{PQ} , where P(3,1) and Q(7,4) k) \overrightarrow{PQ} , where P(4,-2) and Q(-5,7)

396

Exercise 22.3

Perform the operation on the vectors.

m) find
$$4\vec{v}+7\vec{w}$$
 for $\vec{v}=\langle 2,3\rangle$ and $\vec{w}=\langle 5,1\sqrt{3}\rangle$

n) find
$$\vec{v} - 2\vec{w}$$
 for $\vec{v} = \langle -11, -6 \rangle$ and $\vec{w} = \langle -3, 2 \rangle$

o) find
$$3\vec{v}-\vec{w}$$
 for $\vec{v}=-4\vec{i}+7\vec{j}$ and $\vec{w}=6\vec{i}+\vec{j}$

p) find
$$-\vec{v}-\sqrt{5}\vec{w}$$
 for $\vec{v}=5\vec{j}$ and $\vec{w}=-8\vec{i}+\sqrt{5}\vec{j}$

Exercise 22.4

Find a unit vector in the direction of the given vector.

d)
$$\langle 8, -6 \rangle$$
 d) $\langle -3, -\sqrt{7} \rangle$ c) $\langle 9, 2 \rangle$ d) $\langle -\sqrt{5}, \sqrt{31} \rangle$ e) $\langle 5\sqrt{2}, 3\sqrt{10} \rangle$ f) $\langle 0, -\frac{3}{5} \rangle$

Exercise 22.5

Find the approximate magnitude and direction angle of sum $\vec{v} = \vec{v_1} + \vec{v_2}$ of the given vectors $\vec{v_1}$ and $\vec{v_2}$ (see Example 22.18).

a)
$$||\vec{v_1}||=6$$
, and $\theta_1=60^\circ$, and $||\vec{v_2}||=2$, and $\theta_2=180^\circ$

b)
$$||\vec{v_1}|| = 3.7$$
, and $\theta_1 = 92^\circ$, and $||\vec{v_2}|| = 2.2$, and $\theta_2 = 253^\circ$

c)
$$||\vec{v_1}|| = 8$$
, and $\theta_1 = \frac{3\pi}{4}$, and $||\vec{v_2}|| = 8\sqrt{2}$, and $\theta_2 = \frac{3\pi}{2}$