20.3 Exercises

Exercise 20.1

Find all solutions of the equation, and simplify as much as possible. Do not approximate the solution.

(a)
$$\tan(x) = \frac{\sqrt{3}}{3}$$
 (b) $\sin(x) = \frac{\sqrt{3}}{2}$ (c) $\sin(x) = -\frac{\sqrt{2}}{2}$ (c) $\cos(x) = \frac{\sqrt{3}}{2}$
(e) $\cos(x) = 0$ (f) $\cos(x) = -0.5$ (g) $\cos(x) = 1$ (h) $\sin(x) = 5$
(i) $\sin(x) = 0$ (j) $\sin(x) = -1$ (k) $\tan(x) = -\sqrt{3}$ (l) $\cos(x) = 0.2$

Exercise 20.2

Find all solutions of the equation. Approximate your solution with the calculator.

(a)
$$\tan(x) = 6.2$$

(b) $\cos(x) = 0.45$
(c) $\sin(x) = 0.91$
(c) $\sin(x) = 0.91$
(c) $\sin(x) = -0.06$
(c) $\sin(x) = -0.06$

Exercise 20.3

Find at least 5 distinct solutions of the equation.

a)
$$\tan(x) = -1$$
 b) $\cos(x) = \frac{\sqrt{2}}{2}$ c) $\sin(x) = -\frac{\sqrt{3}}{2}$ d) $\tan(x) = 0$
e) $\cos(x) = 0$ f) $\cos(x) = 0.3$ g) $\sin(x) = 0.4$ h) $\sin(x) = -1$

Exercise 20.4

Solve for *x*. State the general solution without approximation.

(a)
$$\tan(x) - 1 = 0$$

(b) $2\sin(x) = 1$
(c) $2\cos(x) + \sqrt{3} = 0$
(c) $2\cos(x) + \sqrt{3} = 0$

Exercise 20.5

Solve for *x*. State the general solution without approximation.

a) $2\sin^2(x) - \sqrt{2}\sin(x) = 0$ b) $\tan^2(x) + \tan(x) = 0$ c) $2\cos^2(x) + \sqrt{3}\cos(x) = 0$ c) $\tan^2(x) - 3 = 0$ c) $\tan^2(x) - 3 = 0$ c) $\tan(x)\cos(x) + \sqrt{3}\cos(x) = 0$ c) $\sin^2(x) + \sin(x) - 1 = 0$ c) $2\sin^2(x) + \sin(x) - 1 = 0$ c) $2\cos^2(x) + 9\cos(x) = 5$ c) $\tan^2(x) + \tan(x) = 0$ c) $\tan^2(x) - \tan(x) = 0$ c) $\tan^3(x) - \tan(x) = 0$

Exercise 20.6

Use the calculator to find all solutions of the given equation. Approximate the answer to the nearest thousandth.

a) $2\cos(x) = 2\sin(x) + 1$	b) $7 \tan(x) \cdot \cos(2x) = 1$
c) $4\cos^2(3x) + \cos(3x) = \sin(3x) + 2$	d) $\sin(x) + \tan(x) = \cos(x)$