13.3 Exercises

Exercise 13.1

Graph the following functions with the calculator.

(a)
$$y = 5^x$$
 (b) $y = 1.01^x$ (c) $y = (\frac{1}{3})^x$ (d) $y = 0.97^x$ (e) $y = 3^{-x}$ (f) $y = (\frac{1}{3})^{-x}$ (g) $y = e^{x^2}$ (h) $y = 0.01^x$ (i) $y = 1^x$ (j) $y = e^x + 1$ (k) $y = \frac{e^x - e^{-x}}{2}$ (l) $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

The last two functions are known as the *hyperbolic sine*, $\sinh(x) = \frac{e^x - e^{-x}}{2}$, and the *hyperbolic tangent*, $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Recall that the *hyperbolic cosine* $\cosh(x) = \frac{e^x + e^{-x}}{2}$ was already graphed in Example 13.5.

Exercise 13.2

Graph the given function. Describe how the graph is obtained by a transformation from the graph of an exponential function $y=b^x$ (for appropriate base b).

Exercise 13.3

Use the definition of the logarithm to write the given equation as an equivalent logarithmic equation.

a)
$$4^2=16$$
 b) $2^8=256$ c) $e^x=7$ d) $10^{-1}=0.1$ e) $3^x=12$ f) $5^{7\cdot x}=12$ g) $3^{2a+1}=44$ h) $\left(\frac{1}{2}\right)^{\frac{x}{h}}=30$

Exercise 13.4

Evaluate the following expressions without using a calculator.

a)
$$\log_7(49)$$
 b) $\log_3(81)$ c) $\log_2(64)$ d) $\log_{50}(2500)$ e) $\log_2(0.25)$ f) $\log(1000)$ g) $\ln(e^4)$ h) $\log_{13}(13)$ i) $\log(0.1)$ j) $\log_6(\frac{1}{36})$ k) $\ln(1)$ l) $\log_{\frac{1}{2}}(8)$

251

Using a calculator, approximate the following expressions to the nearest thousandth.

$$\log_3(50)$$

$$\log_3(50)$$
 $\log_3(12)$

c)
$$\log_{17}(0.44)$$

d)
$$\log_{0.34}(200)$$

State the domain of the function f and find any vertical asymptote(s) and x-intercept(s). Use the results to sketch the graph.

a)
$$f(x) = \log(x)$$

$$f(x) = \log(x)$$

 $f(x) = \ln(x+5) - 1$

a)
$$f(x) = \log(x)$$

b) $f(x) = \log(x+7)$
c) $f(x) = \ln(x+5) - 1$
d) $f(x) = \ln(3x-6)$
e) $f(x) = 2 \cdot \log(x+4)$
f) $f(x) = -4 \cdot \log(x+2)$

i)
$$f(x) = \log_{0.4}(x)$$

$$f(x) = \log|x|$$

b)
$$f(x) = \log(x + 7)$$

$$f(x) = \ln(3x - 6)$$

$$f(x) = 2 \cdot \log(x+4)$$
 $f(x) = -4 \cdot \log(x+2)$

j)
$$f(x) = \log_3(-5x) - 2$$

$$f(x) = \log|x+2|$$