Mat 1375 HW12

Exercise 12.1 Solve for *x*. **J**_{a) $5x + 6 \le 21$} **b**) 3 + 4x > 10xb) 3+4×>(0× So | a) 5x t6 ≤ 21 $\Rightarrow 3 > 10 \times -4 \times$ ⇒ 5X ≤ 21-6 $\Rightarrow \frac{3}{2} > \frac{6\times}{6}$ $\Rightarrow 5x \le 15$ $\Rightarrow x \le 3$ ⇒ 12>× Exercise 12.2 Solve for *x*. (a) $x^2 - 5x - 14 > 0$ (b) $x^2 - 2x \ge 35$ (c) $x^2 - 4 \le 0$ (d) $x^2 + 3x - 3 < 35$ c) $x^2 - 4 \le 0$ e) $2x^2 + 2x \le 12$ g) $x^2 - 4x + 4 > 0$ c) $x^2 - 4x + 4 > 0$ c) $x^2 - 4x + 6 \ge 0$ c) $x^2 - 4x + 6 \ge 0$ S_0 : a) $x^2 - 5x - 14 > 0$ D Find notes of $x^2 - 5x - (4 - 0) \Rightarrow (x+2)(x-1) = 0$ x + 2 x - 7 \Rightarrow Xt2=0 or X-7=0 \Rightarrow X=-2, X=7. Number line for positivity/negativity analysis: For $x^2 - 5x - 14 > 0$, we have X∈ (-∞,-2) U (7,∞) (X-7) - + 3 Check endpoint: since the question "x-5x-14 >0" is without 'equal" then endpoints are NOT included.

 $[\]Rightarrow X \in (-\infty, -2) \cup (7, \infty)$

b)
$$x^2-2x \ge 35$$

 $\Rightarrow x^2-2x - 35 \ge 0$
() Find the root of $x^2-2x - 35 = 0 \Rightarrow (x+5)(x-7) = 0$
 $x + 5$
 $x + 5 = 0$ or $x - 7 = 0 \Rightarrow x = -5$ or $x = 7$
(a) Number line for positivity/negativity analysis:
 $x^2-2x - 35$
 $(x+5)$
 $(x+5)$
 $(x-7)$
(x-7)

h) $\chi^{3} - 2\chi^{2} - 5\chi + 6 \ge 0$ ① Find the nots of $x^3 - z^2 - zx + 6 = 0$. • Test educated guess " $x = 1^{n}$:

$$(1)^{3}-2\cdot(1)^{2}-5\cdot(1)+6 = 1-2-5+6 = 0$$

$$\Rightarrow X=1 \text{ is a root and } (X-1) \text{ is a factor of } x^{3}-2x^{2}-5x+6$$

$$T \text{ han find all nots by factor } x^{2}-2x^{2}-5x+6 = (x-1)\cdot(x^{2}-x-6) = 0$$

$$\Rightarrow X=1 \text{ or } X=-2 \text{ or } X=3.$$

(a) Number line for positivity/ negativity analysis:

$$x^{3}-2x^{2}-5x+6 = (x-1)\cdot(x^{2}-x-6) = 0$$

$$\Rightarrow X=1 \text{ or } X=-2 \text{ or } X=3.$$

(b) Number line for positivity/ negativity analysis:

$$x^{3}-2x^{2}-5x+6 = + - + \text{ For } x^{2}-2x^{2}-5x+6 > 0, we have x=0$$

$$(x-1) = -(x+1)^{2} + (x+1)^{2} + (x+1)^{2$$

3 Check endpoints: Since the question " 12x+7 1-9 >0" is without equal, then endpoints are NOT included. (∞را) ۵(۶-,∞,-) × < () Solve $6x+3 = 3 \implies 6x+3 = 3$ or 6x+3 = -3b) 6x+2 < 3 $\Rightarrow 6X=0$ or $6x=-6 \Rightarrow X=0$ or x=-1. Aumber (The. 6X+2 -3 0 x=1 00 $-\infty = -2 - 1 = -1$ $|6(-2)+2|-3|6(-\frac{1}{2})+2|-3|6(-1)+2|-3$ = |-10| - 3 = |-3+2| - 3 = |8| - 3= 10-3=7>0 = 1-3 < 0 = 8-3=5>0For $| 6x+2 | -3 < 0 \Rightarrow x \in (-1, 0)$ 3 Check endpoints: Since the question " 16x+2 |-3 < 0" is without equal, then endpoints are NOT included. $\Rightarrow x \in (-1, 0)$

0|5-3x| ≥ 4 0|5-3x| ≥ 4 0|5-3x| = 4 ⇒ 5-3x = 4 or 5-3x = -4⇒ -3x=-1 or -3x=-9 ⇒ x= = 5 or x=3

For
$$|5-3x| > 4$$
, we have $x \in (-\infty, \frac{1}{3}) \cup (3, \infty)$
(3) Chack endpoints: Since the guestion " $|5-3x| > 4$ " is with equal equal, then endpoints are included!
 $x \in (-\infty, \frac{1}{3}] \cup [3, \infty)$
Exercise 12.5
Solve for x .
(a) $\frac{a+2}{3x+8} \ge 0$ (b) $\frac{a-5}{2-x} > 0$ (c) $\frac{9x-11}{7x+15} \le 0$ (c) $\frac{13a+4}{6x-1} \ge 0$
(c) $\frac{7a-2}{3x+8} < 0$ (c) $\frac{4x-4}{x^2-4} \ge 0$ (c) $\frac{x^2-9}{x^2-4x-5} < 0$ (c) $\frac{13a+4}{6x-1} \ge 0$
(c) Find the x-interruption and vertical asymptoteches).
 $x+2=0 \Rightarrow x=-4$
(c) Find the x-interruption and vertical asymptoteches).
 $x+2=0 \Rightarrow x=-2$
(c) Chack endpoints:
 $x=-2 \Rightarrow -\frac{2}{-2}+4 = 0$ (c) $\Rightarrow x \in (-\infty, -4) \cup (-2, \infty)$
 $x=-4 \Rightarrow \frac{x+2}{x+4}$ underhead
(c) $\frac{9x-11}{7x+15} \le 0$
(c) Find $x - interrupts and a vertical asymptote.
 $9x-11=0$
 $x=-\frac{15}{7}$$

7x + 5 = 0 $x = -\frac{15}{7}$

(a) Number lina

$$\frac{qX+1}{qXtts} \xrightarrow{-\infty} -\frac{1}{2} \xrightarrow{-\frac{1}{2}} \frac{1}{q} \xrightarrow{-\frac{1}{2}} \xrightarrow{-\frac{1}{2$$

⇒ Xe (-∞, -1) 0 (2,5)