Mat 1375 HWID

Exercise 10.1

Find the domain, the vertical asymptotes, and removable discontinuities of the functions:

a)
$$f(x) = \frac{2}{x-2}$$
 b) $f(x) = \frac{x^2+2}{x^2-6x+8}$

c)
$$f(x) = \frac{3x+6}{x^3-4x}$$
 d) $f(x) = \frac{(x-2)(x+3)(x+4)}{(x-2)^2(x+3)(x-5)}$

e)
$$f(x) = \frac{x-1}{x^3-1}$$
 f) $f(x) = \frac{2}{x^3-2x^2-x+2}$

$$Sol$$
 a) $f(x) = \frac{2}{x-2}$

Domain: All real numbers but $x \neq 2$ (since x = 2 makes f undefined) $\Rightarrow (-\infty, 2) \cup (2, \infty)$

Vertical Asymptotess: The V.A. is located at the zero of denominator of $f: X-2=0 \Rightarrow X=2 \Rightarrow V.A.$ is the line X=2

No temovable discontinuities

b)
$$f(x) = \frac{x^2+2}{x^2-6x+8} = \frac{x^2+2}{(x-2)(x-4)}$$

Demain: All real numbers boot $x \neq 2$ and $x \neq 4$ (since x = 2 makes f undefined) $\Rightarrow (-\infty, 2) \cup (2, 4) \cup (4, 8)$

V.A.: The V.A. is located at the zero of denominator of f.

$$x-2=0$$
 and $x-4=0 \Rightarrow x=2$ and $x=4$
 $\Rightarrow V.A.$ are $x=2$ and $x=4$

c)
$$f(x) = \frac{3X+6}{x^3-4x} = \frac{3X+6}{x(x+2)(x-2)} = \frac{3(x+2)(x-2)}{x(x+2)(x-2)}$$

Domain: All real number but $x \neq 0$, $x \neq -2$, $x \neq 2$ $\Rightarrow (-\infty, -2) \cup (-2, 0) \cup (0, 2) \cup (2, \infty)$

Removable discontinuity: X+2=0 => [x=-2]

V.A.: The V.A. is located at the zero of denominator of f: x=0 and $x-2=0 \implies x=0$ and x=2

No Removable discontinuity.

Exercise 10.2

Find the horizontal asymptotes of the functions:

a)
$$f(x) = \frac{8x^2 + 2x + 1}{2x^2 + 3x - 2}$$
 b) $f(x) = \frac{1}{(x-3)^2}$

c)
$$f(x) = \frac{x^2 + 3x + 2}{x - 1}$$
 d) $f(x) = \frac{12x^3 - 4x + 2}{-3x^3 + 2x^2 + 1}$

$$Sol: a) Lot p(x) = 8x^2 + 2x + 1, \ f(x) = 2x^2 + 3x - 2, \ f(x) = \frac{f(x)}{g(x)}$$

Since deg(p) = 2 = deg(q), then

H.A. is the line $y = \frac{\text{leading overff. of } q}{\text{leding coeff. of } q} = \frac{8}{2} \Rightarrow y = 4$

b) Let p(x) = 1, $q(x) = (x-3)^2 = x^2 6x + 9$, for $= \frac{p(x)}{q(x)}$

Since deg (p)=0 < deg(q)=2, then H.A. is the line y=0

c) Let $p(x) = x^{2}+3x+2$, q(x)=x-1, $f(x) = \frac{p(x)}{q(x)}$ = (x+1)(x+2)

Since there is NO common factor of post and gex), and dog (pox) = 2 < deg(qox) = 1, then there is NO H.A.

d) Let $p(x) = \frac{1}{2}x^3 - 4x + 2$, $g(x) = \frac{-3}{3}x^3 + 2x^2 + 1$, $f(x) = \frac{p(x)}{g(x)}$ = $(x+1)(-3x^2 + x + 1)$

Since there is ND common factor of pix and goo, $\frac{1}{3} = \frac{3}{3} = \frac{1}{1} = \frac{1}{10}$

and $dog(p\infty)=3=dog(q\infty)=3$, then

H.A. is the line $y = \frac{\text{leading outf of } P}{\text{leding coeff. of } Q} = \frac{12}{-3} = -4 \Rightarrow y = -4$

Exercise 10.3

Find the x- and y-intercepts of the functions:

a)
$$f(x) = \frac{x^{-3}}{x-1}$$
 b) $f(x) = \frac{x^{3}-4x}{2x-8x+15}$ c) $f(x) = \frac{(x-3)(x-1)(x+4)}{(x-2)(x-5)}$ d) $f(x) = \frac{x^{2}+5x+6}{x^{2}+2x}$

Sol (a) $f(x) = \frac{x-3}{x-1}$

X—intercept(s): $0 = f(x) = \frac{x-3}{x-1} \Rightarrow x-3=0 \Rightarrow x=3 \Rightarrow (3 \le 6)$

Y—intercept(s): $f(0) = \frac{0-3}{0-1} = \frac{-3}{1} = 3 \Rightarrow (0 \le 3)$

(b) $f(x) = \frac{x^{3}-4x}{x^{2}-4x+15} = \frac{x(x+2)(x-2)}{(x-3)(x-5)}$

X—intercept s: $0 = f(x) = \frac{x(x+2)(x-2)}{(x-3)(x-5)} \Rightarrow x(x+2)(x-2) = 0$

$$\Rightarrow x=0, x+2=0, x-2=0 \Rightarrow x=0, x=-2, x=2$$

$$\Rightarrow (0 \le 6), (-2 \le 6) \Rightarrow (0 \le 6)$$

Y—intercept: $f(0) = \frac{(0)^{3}-4+(0)}{(x-2)(x-5)} \Rightarrow (0 \le 6)$

(c) $f(x) = \frac{(x-3)(x-1)(x+4)}{(x-2)(x-5)}$

X—intercept: $0 = f(x) = \frac{(x-3)(x-1)(x+4)}{(x-2)(x-5)} \Rightarrow (x-3)(x-1)(x+4) = 0$

$$\Rightarrow x=0, x-1=0, x+4=0 \Rightarrow x=3, x=1, x=-4$$

$$\Rightarrow (3 \le 6), (1 \le 6), (1 \le 6)$$

Y—intercept: $f(0) = \frac{(0-3)(x-1)(x-4)}{(x-2)(x-5)} = \frac{(3)(x-1)(x-4)}{(-2)(x-5)} = \frac{12}{(0-2)(x-5)} = \frac{6}{(-2)(x-5)}$

d) $f(x) = \frac{x^{2}+5x+6}{x^{2}+2x} = \frac{(x+2)(x+3)}{x^{2}+2x} = \frac{x+3}{x}$ but $x \ne -2$

 $X-intercept: 0=f(x)=\frac{X+3}{X} \Rightarrow X+3=0 \Rightarrow X=-3\Rightarrow (-3,0)$

y-interopt:
$$X$$
 cannot be a since $X=0$ is a $V.A.$
 $\Rightarrow ND$ y-interopt.

Exercise 10.4

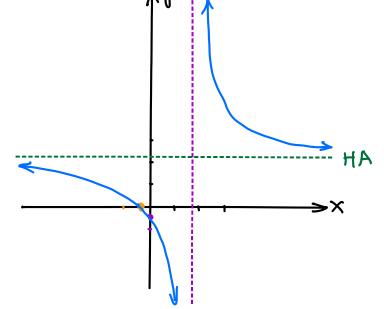
Sketch a complete graph of the function f. To this end, calculate the domain of f, the horizontal and vertical asymptotes, the removable singularities, the x- and y-intercepts of the function, and graph the function with the graphing calculator.

$$V_a) \ f(x) = \frac{7x+2}{3x-5} \qquad V_b) \ f(x) = \frac{x^2-x-2}{x^2+2x-3}$$

$$501: a) fox = \frac{7x+2}{3x-5}, Lot pox = 7x+2, 700 = 3x-5$$

Domain: All real numbers but
$$3X-5+0$$
, $(X+\frac{5}{3})$
 $\Rightarrow X \in (-\infty, \frac{5}{3}) \cup (\frac{5}{3}, \infty)$

H.A. Since deg
$$(p\infty)=1=deg(q\infty)$$
, then
$$\frac{1}{7} \Rightarrow 0$$


H.A. is the line
$$y = \frac{\text{leading onth rf } P}{\text{leding coeff. of } Q} = \frac{7}{3} \Rightarrow y = \frac{2}{3}$$

V.A.: V.A. occurs at
$$3x-5=0 \Rightarrow x=\frac{5}{5} \Rightarrow$$

V.A. is the line $x=\frac{5}{5}$

$$X = \text{intercept}$$
: $0 = f(x) = \frac{7x+2}{3x-5} \Rightarrow 7x+2=0 \Rightarrow X = -\frac{2}{7} \Rightarrow (-\frac{2}{7}, 0)$

y-intercept:
$$f(0) = \frac{7.0 + 2}{3.0 - 5} = \frac{2}{-5} = -\frac{2}{5} \Rightarrow (0) = \frac{2}{5}$$

Graph

b) fix =
$$\frac{x^2 \times -2}{x^2 \times x^3} = \frac{(x-2)(x+1)}{(x+3)(x+1)}$$
 ($\frac{x^2 \times x^3}{x^2 \times x^3} = 1 + \frac{-3x+1}{x^2 \times x^3}$)

Domain: All real numbers but $x \neq -3$, $x \neq 1 \Rightarrow x \in (-\infty, -3) \cup (-3, 1) \cup (1, 2, \infty)$

H.A. Let $p(x) = x^2 \times -2$, $q(x) = x^2 \times x^3$.

Since there is NO factor of p and q , and $p(x) = 2 = \log(q)$, then

H.A. is the line $y = \frac{\log \log x}{\log x} + p = \frac{1}{1} \Rightarrow y = 1$

V.A. Occurs at $(x+3)(x+1) = 0 \Rightarrow x+3=0$, $x+1=0$

V.A. are lines $x = -3$, $x = 1$.

X-interept: $0 = \frac{(x-2)(x+1)}{(x+3)(x+1)} \Rightarrow (x-2)(x+1) = 0 \Rightarrow x-2=0$, $x+1=0$
 $y = \frac{(x-2)(x+1)}{(x+3)(x+1)} \Rightarrow (x-2)(x+1) = 0 \Rightarrow x-2=0$, $x+1=0$

Y.A. $x = \frac{1}{2} \Rightarrow \frac{(x-2)(x+1)}{(x+3)(x+1)} \Rightarrow \frac{(x-2)(x+1$