MAT 1375, Classwork8, Fall2024

D: Name:Name:
L. The domain of a polynomial f is <u>all real humber</u> , and it is continuous for all real
numbers and there are no <u>jumps</u> , no <u>Vertical</u> or <u>horizontal</u>
asymptotes, and no <u>corver / cusp</u>

The following graphs cannot be graphs of polynomials:

2. Factors and roots of polynomials:

Every *n*-degree polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0$, $(a_n \neq 0)$ can be factored as $f(x) = a_n (x - c_1)(x - c_2) \dots (x - c_n)$. Thus, the polynomial f(x) of degree *n* has **at most** n roots (which are c_1, c_2, \dots, c_n) and these roots may be either real or real polynomial with all real coefficients. The complex roots are always found as a **pair**, that is, if c = a + bi is a complex root of *f*, then the complex real polynomial x is also a root of *f*.

5. Arrow Notation: Given a constant *a* and we have

$x \rightarrow a^+$:	x approaches a from the right (x is very closed to a but $x \neq a$ and $x \geq a$)
$x \rightarrow a^-$:	x approaches a from the left (x is very closed to a but $x \neq a$ and $x \leq a$)
$x \to \infty$:	x approaches infinity (x increases without bound)
$x \to -\infty$:	x approaches negative infinity (x decreases without bound)