MAT 1375, Classwork7, Fall2024

Name: Sol

1. Definition of **Polynomial function of degree** \boldsymbol{n} in one variable:

A **Polynpina** in one variable is a function
$$f$$
 of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0,$$

for some constants a_0, a_1, \dots, a_n , where $\underline{\alpha_n} \neq 0$ and n is a non-negative integer. The numbers a_0, a_1, \dots, a_n are called <u>Coefficients</u>

The **number** a_n , the coefficient of the variable to the highest power, is called the

leading coefficient and
$$n$$
 is the degree of the polynomial.

2. The End Behavior of the polynomials and the Leading Coefficient Test:

As x goes to ∞ or $-\infty$, the graph of polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0, \quad (a_n \neq 0)$$

either rises or falls eventually. Here, we can conclude this into the following table

	<i>n</i> is an odd number		<i>n</i> is an even number	
	$a_n > 0$	<i>a_n</i> < 0	$a_n > 0$	<i>a_n</i> < 0
	(V. 7)	(1, 7)	(17, 1)	(1, 1)
exan	$\frac{y = x^3}{\sqrt{y^4}}$	$y = - x^3$ $y = - x^3$ x	$y = x^2$	y=-x² /yy >x

ID:_____

3. A <u>foot</u> or <u>solution</u> of a polynomial f(x) is a number c so that f(c) =. Each real root/zero/solution of the polynomial f(x) appears as an <u>X-integraph</u> of the graph of f(x). (Here `real' means not a complex number)

4. **Multiplicity** of the root and x-Intercepts:

Let $f(x) = (x - r)^k$ where r is the <u>root</u> of f and this root repeats <u>k</u> times. We call r a root with <u>multiplicity</u> k.

Even Multiplicity (k is even)	Odd Multiplicity (k is odd)		
The graph <u>touches</u> the x -axis and	The graph C_{10} the x-axis at the		
turns around at the root r .	root <i>r</i> .		
The graph tends to flatten out near the roots with multiplicity greater than			

5. **Turning Points** of Polynomial Functions:

Let f(x) be a polynomial function of **degree** n, then the graph of f has at most $\underline{\eta - 1}$ turning points.

6. The essential part for drawing **a complete graph of** *f*:

- ong-range End Behavior by <u>leading</u> coefficient test (how the function behaves when χ approaches $\pm \infty$)
 - All roots (which are <u>X</u> intercepts) with the Multiplicities
 - All y-intercepts (the values by computing $\frac{f(0)}{f(0)}$)
 - All asymptotes (for rational functions in next chapter)
 - Turning points with Extrema (that is all <u>Maxima</u> and <u>Minima</u>)