MAT 1375, Classwork6, Fall2024

ID:	Name:

1. Let f and g be the functions defined by the table below. Complete the table by performing the indicated operations.

x	1	2	3	4	5	6	7
f(x)	4	5	7	0	-2	6	4
g(x)	6	-8	5	2	9	11	2
g(x) + 3	9	ا م	8	5	11	14	15
f(x) - 2g(x)	-8	2	7	-4	-20	-16	0
g(x+3)	7	9		2	undation	undatived	un defined
$(f\circ g)(x)$		undefined	-2	5	undefixed	undefined	-8
$(g \circ f)(x)$	2	q	N	undotized	undefined	11	Z
$(g\circ g)(x)$		undefined	9	-8	undation	undation	-8

2. Complete the definition of the **one-to-one function** (or **injective**):

Given a function f(x). If any two different inputs $X_1 + X_2$ always have different outputs f(x), then we call this function f(x) a **one-to-one function**.

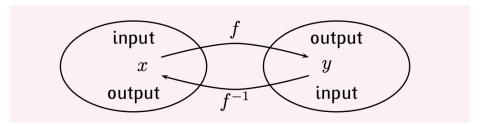
3. Horizontal Line test:

A function is one-to-one when every horizontal line intersects the graph of the function most once.

4. Complete the definition of the Inverse of a Function:

Let f be a function with domain D_f and the range R_f , and assume that f is one-to-one. The **inverse** of f is the function f^{-1} , determined by:

f(x) = y means precisely that f(x) = y



Therefore, we have $D_{f^{-1}} = R_{f^{-1}}$, and $R_{f^{-1}} = R_{f^{-1}}$

5. How to check if two given functions are **inverse** with each other:

Let f and g be two functions such that

$$for every x in the domain of g and for every x in the domain of f.$$

__ for every x in the domain of f.

The function g is the **inverse of the function** f and is denoted by g

6. How to find the inverse function for a given **invertible** function f(x):

Step2: Inforchald X and 4

(Isolate 4)

Step4: Keplace 4 with + (X)

7. Given a function $f(x) = x^2 + 1$, $x \ge 0$. a) Find the inverse function of f(x). b) Graph $f(x) = x^2 + 1$

b)

and f^{-1} in the same coordinate system.

<u>Søl</u> a) step 1: $y = \chi + 1$, $\chi > 0$

Step 2: $\chi = y^2 + 1$, y > 0

Step3: $y^2 = x - 1$, y > 0

 $\int_{x}^{+} \sqrt{x-1}, x > 1$

ep4: fox) = JX-1, x>1

O