MAT 1375, Classwork15, Fall2024

ID:		Name:			
1. Angle in standard position:					
An angle in the plane is in <u>standard postaring</u> its vertex is at the origin and the initial side					
is at the positive x-axis.					
termine	initial side	-120°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 60^{\circ} \\ 45^{\circ} \\ 30^{\circ} \\ 0^{\circ} \text{ or } 360^{\circ} \\ 330^{\circ} \\ 315^{\circ} \\ 300^{\circ} \end{array} $	480° 36° 120°
Counterclockwise direction: Clockwise direct			A full rotation measure as		n angle can be
Angle ≥ 0 . Angle ≤ 0 .		Angle <u></u> 0.	360°		<u>></u> 360°
2. The Central angle is an angle whose vertex is at the <u>Centers</u> of the circle.					
The radian measure of the central angle of a circle is ratio of the eng fln of the intercept arc <i>s</i> with the circle radius <i>r</i> : Angle in radian = $\frac{S}{r}$. When $r = 1$ and half circumference of this circle is fr , then we have the central angle to					
be <u>be</u> in degree or <u> </u>				Hypot	enuse
 3. Right Triangle Definitions of Trigonometric Functions and Reciprocal Identities:					
s	$\sin(\theta) = \frac{\text{length of side } \underline{opposite} \text{ angle } \theta}{\text{length of } \underline{fpostenuse}} = \frac{a}{c} \csc(\theta) = \frac{c}{c}$ $\cos(\theta) = \frac{\text{length of side } \underline{adjacent} \text{ to angle } \theta}{\text{length of } \underline{fpostenuse}} = \frac{b}{c} \sec(\theta) = \frac{c}{c}$			$=\frac{1}{\sin(0)}=\frac{c}{a}$	adjacent
c				$=\frac{1}{cos(b)}=\frac{c}{b}$	opposite
t	$\tan(\theta) = \frac{\text{length of side}}{\text{length of side}}$	de <u>opporte</u> angle 6 de <mark>adjacent</mark> to angle 6	$\frac{\partial}{\partial \theta} = \frac{a}{b}$ $\cot(\theta)$	$=\frac{1}{2000}=\frac{b}{a}$	

4. Quotient Identities:

$$\tan(\theta) = \frac{\sin(0)}{\cos(0)} \qquad \qquad \cot(\theta) = \frac{\cos(0)}{\sin(0)}$$

5. The Pythagorean Theorem:

The sum of the square of the lengths of the legs of a right triangle

equals the square of the length of the hypotenuse.

6. Given the right triangles. Find $sin(\theta)$, $cos(\theta)$, $tan(\theta)$.

 $q^2 + b^2 = c^2$

 $\sin(\theta) = \frac{3}{5}$ $C = \sqrt{8^2 + 6^2} = \sqrt{60} = 6$ $C = \sqrt{4^2 + y^2} = \sqrt{3}$ $a = 6 \quad \frac{\sin(\theta) = \frac{6}{10} = \frac{3}{5}}{\cos(\theta) = \frac{8}{10} = \frac{4}{5}}$ $c = \left|_{a=3} \cos(\theta) = \frac{4}{5}\right|$ $\underbrace{\theta}_{b=4} \quad C \quad \tan(\theta) = \frac{3}{4} A$ $\tan(\theta) = \frac{3}{4}$ θ b = 87. Pythagorean Triple:

B

a

С

b

Leg

Hypotenuse

A

B

Leg

(3, 4, 5), (5, 12, 3), (7, 24, 25), (8, 15, 7) the

 $(6, \xi, i \circ)$ 8. The values of trigonometric functions only depend on the size of $\underline{0}$, not the size of the triangle.

9. The values of trigonometric functions with special angles:

