1. Evaluate the expression by rewriting it as an exponential expression.

a)
$$\log_5(125)$$
. b) $\log_4(1)$. c) $\log_7\left(\frac{1}{49}\right)$. d) $\log_2(\sqrt[5]{2})$. e) $\log_{25}(5)$.
Sol: a) Let $(x) = \log_2(125)$. $\Rightarrow 5^x = 125 \Rightarrow x = 3$
b) Let $(x) = \log_2(125)$. $\Rightarrow 5^x = 125 \Rightarrow x = 3$
c) Let $(x) = \log_2(125)$. $\Rightarrow 7^x = \frac{1}{49} = \frac{1}{7^2} = 7^2 \Rightarrow x = -2$
d) Let $(x) = \log_2(15)$ $\Rightarrow 7^x = \frac{1}{49} = \frac{1}{7^2} = 7^2 \Rightarrow x = -2$
d) Let $(x) = \log_2(15)$ $\Rightarrow 7^x = 5 = 5^{\frac{1}{2}} \Rightarrow x = \frac{1}{2}$
e) Let $(x) = \log_{25}(5) \Rightarrow 7^x = 5 = 5^{\frac{1}{2}} \Rightarrow x = \frac{1}{2}$

MAT 1375, Classwork12, Fall2024

ID: Name: 1. Evaluate the expression by rewriting it as an exponential expression. b) $\log_4(1)$. c) $\log_7\left(\frac{1}{40}\right)$. d) $\log_2(\sqrt[5]{2})$. e) $\log_{25}(5)$. a) $\log_5(125)$. 2. Basic logarithmic evaluations: Let $f(x) = b^x$ and $g(x) = \log_b x, b > 0, b \neq 1$. We have Elementary logarithms: $b = b^1 \Leftrightarrow ___ = \log_b(b)$. $1 = b^{0} \Leftrightarrow \underline{0} = \log_{b}(1).$ Inverse properties: $\underline{0} = b = x. \quad (f(g(x)) = x)$ equiver x. (g(f(x)) = x) $\log_b(x) = \frac{\log_{10}(x)}{\log_{10}(b)} = \frac{\log(x)}{\log(b)}.$ Change-of-Base property: 10-base: **natural base**: $\log_b(x) = \frac{\log_e(x)}{\log_e(b)} = \frac{\ln(x)}{\ln(b)}$. 3. Graph $f(x) = 3^x$ and $g(x) = \log_3 x$ in the same coordinate. 9 -3 -2 0 3 -1 1 2 х g(x)-3 3 -2 0 -1 2 1 reflect x= for $-3 = \log_{3} x \implies x = 3 = \frac{3}{2}$ $-2 = \log_{3} x \implies x = 3 = 4$ $1 = \log_{3} x \implies x = 3^{1} = 5^{1}$ $0 = \log_3 x \implies x = 3^\circ = ($ $(1) = \log_{\beta} x \implies x = \frac{3}{2} > 3$ $2 = \log_{3} x \implies x = 2 = 7.$ The domain of $g: (0, \infty)$ The range of g: $(-\infty, \infty)$

Exponential Identities	Logarithmic Identities
$b^x \cdot b^y = b^{x+y}$	$\log_b X + \log_b Y = \log_b(XY)$
(The same base multiplication = the addition	(The Product Rule: The same log base
of exponents)	addition = the product of the values)
$\frac{b^x}{b^y} = b^{x-y}$	$\log_b X - \log_b Y = \log_b \left(\frac{X}{Y}\right)$
(The same base division = the subtraction of	(The Quotient Rule: The same log base
exponents)	subtraction = the division of the values)
$(b^x)^n = b^{xn}$	$\log_b X^n = n \cdot \log_b X$
	(The Power Rule)

6. Combine the terms using the properties of logarithms to write as one logarithm.

a)
$$\frac{1}{2}\ln(x) + \ln(y)$$
. b) $5 + \log_2(a^2 - b^2) - \log_2(a + b)$
= $\ln x^2 + \ln(y) = 5 \cdot 1 + \log_2(\frac{a^2 - b^2}{a + b})$
[power rule) Quotient rule

$$= \ln (x^{\frac{1}{2}}, y) = 5 \cdot \log_2(2) + \log_2(\frac{a^2-b^2}{atb})$$

$$= \log_2(2^5) + \log_2(\frac{a^2-b^2}{atb})$$

(power rule)
product rule

$$= \log_2(2^5, \frac{a^2-b^2}{atb})$$

$$= \log_2(2^5, (a-b))$$