MAT 1375, Classwork11, Fall2024

ID:_____ Name:____

1. Solve for x: (a) $|2x - 3| \ge 7$. (b) $\frac{x^2 - 5x + 6}{x^2 - 5x} \ge 0$

2. Definition of the Exponential Function:

A function f is called <u>exponential</u> factor with <u>base</u> b for any real number x if $f(x) = c \cdot b^x$,

for some <u>real</u> number c and <u>positive</u> real number b which is called the <u>base</u>.

3. Please circle the given function if it is an **exponential function**:

$$(1)f(x) = 2^{x}. \quad (2)g(x) = 3^{x+1}. \quad (3)h(x) = e^{x}. \quad (4)h(x) = \left(\frac{1}{5}\right)^{x}. \quad (5)h(x) = x^{2}$$

$$(6) m(x) = (-1)^{x}. \quad (7) n(x) = x^{x}.$$

4. Graph the given functions:

- 5. Characteristics of Exponential Function of $f(x) = b^x$.
- (a) The domain of $f: (-\infty, \infty)$; The Range of $f: (0, \infty)$. (b) There is M x-intercept. In fact, f approaches, but never touches X - 0xis which is a horizox(tq) asymptote of f. (c) Its y-intercept is (0, 1). (d) f is one-to-one and has an fintercept function. (e) For b > 1, $f(x) \rightarrow b$ as $x \rightarrow \infty$, $f(x) \rightarrow 0^+$ as $x \rightarrow \infty$, $f(x) \rightarrow b$ as $x \rightarrow -\infty$. (f) For 0 < b < 1, $f(x) \rightarrow 0^+$ as $x \rightarrow \infty$, $f(x) \rightarrow b$ as $x \rightarrow -\infty$.
- 6. What is the 4-steps strategy to find the inverse of a given function? Can it be used to find the inverse function of $f(x) = b^x$?

7. Definition of Logarithmic Function:

For x > 0 and b > 0, $b \neq _$, the logarithmic of x with base b is defined by the equivalence

$$x = b^y \quad \Leftrightarrow \quad y = \log_b(x).$$

This computes the inverse of the exponential function $y = b^x$ with base b. (We exchange

$$x = b^y$$
 and solve for y .

8. Rewrite the equation as a logarithmic equation.

54

a)
$$3^{4} = x = 8$$
 b) $e^{x} = 17$. c) $2^{7a} = 53$. d) $b^{3} = 8$.
(4= $b^{3} = x = 8$ (8)
(53) $3 = b^{3} = 8$
(53) $3 = b^{3} = 6$
(6)
(6) $3 = b^{3} = 6$
(7) $4 = b^{3} = 2$
(7)
(7) $4 = b^{3} = 2$
(8)
(6) $3 = b^{3} = 6$
(8)
(6) $4 = b^{3} = 2$
(7)
(9) $8 = b^{3} = 6$
(8)
(10) $4 = b^{3} = 2$
(10) $4 = b^{3} = 2$