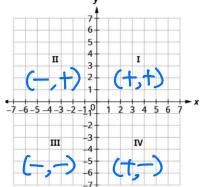
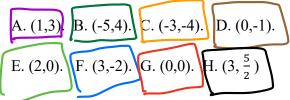
MAT 1275, Classwork16, Fall2024

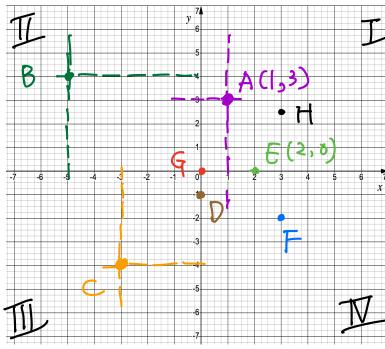

ID:	Name:

1. Just like maps use latitude (north or south) and longitude (east or west) to identify a location, a rectangular

system is used to represent ordered pairs of numbers.

The vertical number line is called $y-\alpha x_1 > 0$.

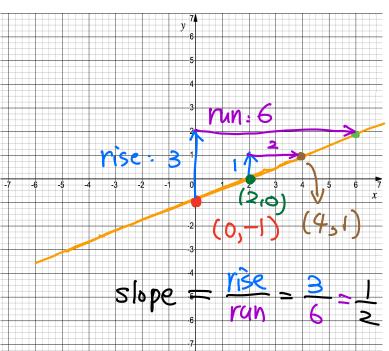

Two perpendicular axes divide the plane into four quadrants:



Quadrant I: the first quadrant with $x \ge 0$, $y \ge 0$. Quadrant II: the second quadrant with $x \le 0$, $y \ge 0$.

Quadrant III: the third quadrant with $x \le 0$, $y \le 0$. Quadrant IV: the fourth quadrant with $x \ge 0$, $y \le 0$.

2. Plot each point in the rectangular coordinate system:



3. The intercept point of x-axis and y-axis is called 0 and its coordinate is (0,0).

4. Graph the equation 2y - x = -2 by plotting points.

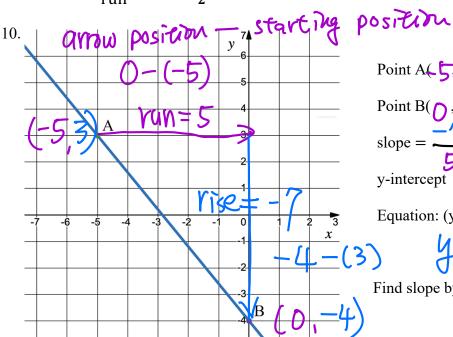
х	у	(x,y)
N	0	(0, 2)
0	1	(0, -1)
पे		(4,1)
6	7	(6,2)
%	3	& , 3)
0	4	(10,4)
12	5	(12,5)

$$2y = -2$$
, $y = -1$
 $2-x = -2$, $\Rightarrow x = 4$

5. The point with zero value of y is called X-intercept of the graph. Just like (2.8)

6. The point with zero value of x is called y -integraph of the graph. Just like (0, -1)

7. Rewrite
$$2y - x = -2$$
 into the form $y = \frac{1}{2}x - 1$.


$$y = \frac{x-2}{2} = \frac{x}{2} - \frac{2}{2}$$

$$y = \frac{x-2}{2} = \frac{x}{2} - \frac{2}{2}$$

$$y = \frac{x-2}{2} = \frac{x}{2} - \frac{2}{2}$$
$$= \frac{|x|}{2} - |x|$$

8. The number $\frac{1}{2}$ in the form $y = \frac{1}{2}x - 1$ is called $\frac{1}{2}x - 1$ is called $\frac{1}$

9. The slope = $\frac{\text{rise}}{\text{run}}$. For $y = \frac{1}{2}x - 1$, run = $\frac{6}{2}$ and rise = $\frac{3}{2}$.

Point B(
$$0,-\phi$$
)
slope = $\frac{-7}{5}$
y-intercept ($0,\phi$)

Equation: $(y=(slope)\cdot x+(a constant))$

$$y = -\frac{7}{5}x + \frac{9}{5} = -4$$

Find slope by point A and B:

$$y = -\frac{7}{5} \times -4$$

If
$$X=-5$$
, $y=3$

$$3 = -\frac{7}{5} \cdot (-5) + ?$$

$$3 = -7 + ?$$

$$-7 - -7$$

$$-1 - -7$$

3. Find the equation of a line that passes through the points (-3,2) and

$$B^{(1,6)}$$
. A $(-3,2)$

Slope =
$$\frac{6-2}{1-(-3)} = \frac{4}{1+3} = \frac{4}{4} = 1$$

Equation
$$y = 1 \cdot x + ? \implies y = 7+5$$

$$2 = 1 \cdot (-3) + ? \implies ? = 2+3 = 5$$