Honors Calculus, Sample First Midterm (b)

Dr Matthew Nicol, PGH 665

The test has 6 questions of equal worth. Attempt all questions.

Show all working. Please write your answers clearly and in a logical and well-organized way.

 $Good \ luck.$

- (1) For the function $f(x) = \frac{x^2}{4} x^2 + 1$ find the set of x values for which:
 - (a) f is increasing
 - (b) f is decreasing
 - (c) find all local maxima and minima.
 - (d) find the absolute maximum and minimum.
- (2) Show that the equation $2x 1 \sin x = 0$ has *exactly* one root.

(3) Find the absolute maximum and minimum values of $\ln(x^2 + x + 1)$ on the closed interval [-1, 1].

(4) Find the following limits (without proof):

(a)

$$\lim_{x \to \infty} x^2 e^{-\sqrt{x}}$$
(b)

$$\lim_{x \to 0} \frac{\cos(x) - 1}{\sin(x)}$$
(c)

$$\lim_{x \to \infty} \frac{3x^2 + 2x + 1}{\sqrt{2x^4 + x^2 + 2}}$$
(d)

$$\lim_{x \to 1} |x - 1| \ln |x - 1|$$
(e)

$$\lim_{x \to 0} \frac{\sin(x^7)}{(2x)^7}$$

(5) Suppose a particle moves on a line so that its position x(t) and velocity $\dot{x}(t)$ satisfy the relation

$$\dot{x}^2(t) + x^2(t) = C$$

where C is a constant. Suppose also that at time t = 0, x(0) = 0 and $\dot{x}(0) = 3$. Find the maximum values of x(t), $\dot{x}(t)$ and acceleration $\ddot{x}(t)$.

(6) Suppose a straight line passes through the point (1, 2) in the plane.

(a) Find the value of the slope of such a line that minimizes the distance between the y-intercept and the x-intercept of the line.

(b) Find the value of the slope of such a line that maximizes the area in the first quadrant above the x-axis and under the line.