Group Members:	Group Members: _	Solz,			
----------------	------------------	-------	--	--	--

Classwork 7 - Optimization

With your group, set up and solve the following optimization problem. Show all work at each step.

A 400-room hotel in Las Vegas is filled to capacity every night at \$75.00 a room. For each \$1.00 increase in price, 4 fewer rooms are booked. If each occupied room costs \$15.00 to service per day, how much should the management charge for each room to maximize profit?

a) Find a formula for the function you want to maximize.

Let X be the increasing in price.

Then the profit for each room is 75+x-15=60+x and the number of norm rented is 400-4x

Thus, total profit will be "the profit for each room times f(x) = (60+x)(400-4x) $= -4x^2 + 160x + 24000$

b) What is a feasible domain for the function in part (a)?

The number of room should be between 0 and 400 \Rightarrow 0 \leq 400-4x \leq 400 \Rightarrow -400 \leq -4x \leq 0

c) Determine the critical number(s) of the function.

$$f(x) = -4x^2 + 160x + 24000$$

$$f'(x) = -8x + 160 = 0$$

$$X = 20.$$

d) Use the first or second derivative test to classify the critical number(s) in part c).

First derivative test,
$$\frac{1}{5}$$
 derivative test, $\frac{1}{5}$ $\frac{1}{20}$ $\frac{1}{5}$ $\frac{1}{20}$ $\frac{1}{5}$ $\frac{$

e) At what price does the hotel maximize profit? What is the profit at this price?

$$X = 20$$

$$f(20) = -4(20)^{2} + (60.20 + 24000)$$

$$= (600 + 24000 = 25600)$$