Group Members:	26.	
----------------	-----	--

Classwork 7 - Optimization

With your group, set up and solve the following optimization problem. Show a l work at each step.

A 400-room hotel in Las Vegas is filled to capacity every night at \$75.00 a room. For each \$1.00 increase in price, 4 fewer rooms are booked. If each occupied room costs \$15.00 to service per day, how much should the management charge for each room to maximize profit?

a) Find a formula for the function you want to maximize.

Lot rent for each room be R dollar.

Then the profit for each room is R-15. and the number of room rented is 400-4 (R-75)

= 700-4R

Thus, total profix will be f(R) = (R-15)(700-4R) $= -4R^2 + 760R - 10500$

b) What is a feasible domain for the function in part (a)?

The number of Room should be between 0 and 400 $0 \le 760 - 4R \le 400$ $\Rightarrow 300 \le 4R \le 700 \Rightarrow \frac{300}{6} \le R \le \frac{700}{6}$

c) Determine the critical number(s) of the function.

$$f(R) = -4R^2 + 760R - 10500$$

$$f(R) = -8R + 760 = 0$$

$$R = \frac{760}{8} = 95$$

d) Use the first or second derivative test to classify the critical number(s) in part c).

First:
$$\frac{1}{4}$$
 $\frac{1}{4}$ $\frac{1}{4}$

Second:
$$f'(R) = -f(0) \Rightarrow f(95)$$
 is a local max.

e) At what price does the hotel maximize profit? What is the profit at this price?