Group Memebers:

Classwork 6 – Inverse Functions

1. Define one-to-one function.

2. Is $f(x) = x^2 - 3x + 2$ one-to-one?

3. Is $f(x) = (x-2)^{3/2} + 1$ one-to-one? $(D(f) = \{X > Z\})$

$$f(x) = \frac{3}{2}(x-2)^{\frac{1}{2}} \ge 0$$
 as $x \ge 2 \Rightarrow f$ is always increasing on D(f)
 $\Rightarrow f$ is one—to—one.

4. Is $f(x) = (x-2)^{2/3} + 1$ one-to-one? (D(f) = R)

$$f(x)=\frac{2}{3}(x-2)^{\frac{1}{3}}=\frac{2}{3}\frac{1}{(x-2)^{\frac{1}{3}}}\Rightarrow NOT monotone \Rightarrow f 13 NOT one-to one$$

If a function is one-to-one, then it has an inverse. (Remember, domain of f equals the range of f^{-1})

5. Determine if $f(x) = 4x^5 + 1$ is one-to-one and if so, find $f^{-1}(x)$.

$$f(x) = 20x^4 > 0 \Rightarrow f$$
 is always Increasing $\Rightarrow f$ is invertible.
Find f^{-1} : $f(x) = f(x) = 4x^5 + 1$ $f(x) = 4x^5$

$$f(x)=\frac{9}{7} \times \frac{7}{20} \Rightarrow f$$
 is always Increasing $\Rightarrow f$ is invertible
Final f^{-1} . ① Let $y=f(x)=x^{\frac{9}{7}}$ ② switch x and $g: x=y^{\frac{9}{7}}$
③ solve $g: y=x^{\frac{9}{7}}$

Derivative of Inverse:
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

7. Suppose f has an inverse and
$$f(2)=5$$
. $f'(2)=3/7$. Find $(f^{-1})'(5)$ $f(2)=5 \Rightarrow f(5)=2$

$$\left(f^{-1}\right)'(5) = \frac{1}{f'(2)} = \frac{7}{3} = \frac{7}{3}$$

8.
$$f(x) = x^3 + 2$$
, $f(3) = 29$, find $(f^{-1})'(29)$ $f(3) = 29 \Rightarrow f(29) = 3$
 $f(x) = 3x^2$
 $f(3) = 3x^2 = \frac{1}{33^2} = \frac{1}{27}$

9. f(x) passes through the points (3, -2) and (-2, 5). The slope of the tangent line to the graph of f(x) at x = -2 is -1/4. Evaluate the derivative of the inverse of f at 5.

f passes
$$(3,-2) \Rightarrow f(3)=-2$$

f passes $(-2,5) \Rightarrow f(-2)=5 \Rightarrow f(5)=-2$
The slope of tangent line of f at $x=-2$ is $-\frac{1}{4} \Rightarrow f(-2)=-\frac{1}{4}$
 $(f')(5) = \frac{1}{f(-2)} = -\frac{1}{4} = -4$
10. Suppose that f has an inverse and $f(-20) = -2$, $f'(-20) = 4/3$. If $g = \frac{1}{f^{-1}}$, what is $g'(-2)$? Hint: use the

reciprocal rule to find g' first.

$$f(-20) = -2 \implies (f^{-1})(-2) = -20 \implies (f^{-1})(-2) = \frac{1}{4} = \frac{3}{4}$$

quo tient rule
$$f(-2) = (f^{-1})(-2) = \frac{1}{4} = \frac{3}{4} = \frac{3}{4}$$

$$f(-2) = (f^{-1})(-2) = \frac{1}{4} = \frac{3}{4} = \frac{3}{4}$$